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We show how Raman spectroscopy can serve as a valuable tool for diagnosing quantum spin liquids
(QSL). We find that the Raman response of the gapless QSL of the Kitaev-Heisenberg model exhibits
signatures of spin fractionalization into Majorana fermions, which give rise to a broad signal reflecting their
density of states, and Z2 gauge fluxes, which also contribute a sharp feature. We discuss the current
experimental situation and explore more generally the effect of breaking the integrability on response
functions of Kitaev spin liquids.
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Introduction.—Frustrated magnetic materials show a
wide variety of exotic cooperative quantum phenomena.
Frustration can arise when interactions are incompatible
with the geometry of the underlying lattice, or as a result of
competing interactions. An example of the latter is given by
the celebrated Kitaev model [1], which harbors gapless and
gapped quantum spin liquids (QSL) states. Only a few
known theoretical models to date possess quantum spin-
liquid states. Among those the Kitaev model stands out,
being exactly solvable in two dimensions (2D). More
importantly, it provides valuable insights into the physics
of a broader class of spin liquids with Majorana fermions
coupled to Z2 gauge fields. There is a number of known
integrable generalizations of the model having spin-
disordered ground states [2–4], and even its three-
dimensional (3D) analogies [5–8].
Because of the simplicity of the Kitaev model

Hamiltonian it is likely that its physics can be realized in
nature. A number of theoretical proposals suggest that some
materialswith strong spin-orbit coupling, such as 2D and 3D
A2IrO3 compounds, where A ¼ Na, Li, are possible candi-
dates [9–13]. Because of spin-orbit interactions, the atomic
ground state of Ir4þ ions is aKramers doublet,where the spin
and the orbital angular momentum are entangled, giving rise
to bond-dependent interactions. Since in these compounds
the Ir4þ ions form either weakly coupled hexagonal layers as
in Na2IrO3 and α − Li2IrO3, or honeycomb strips with
alternating orientation, as in 3D β− and γ − Li2IrO3, they
might realize the Kitaev model, albeit having extra inter-
actions. While at present all known materials are magneti-
cally ordered at low temperatures, there is evidence that
some of them (especially the ones having a 3D structure) are
very close to the QSL regime [12,13]. Moreover, residual

high energy features of the QSL seem to have been already
observed in magnetically ordered systems [14].
The minimal model of A2IrO3 compounds is the Kitaev-

Heisenberg (KH) model, which contains both the aniso-
tropic ferromagnetic Kitaev interaction JK and the isotropic
antiferromagnetic Heisenberg exchange JH. The strength
of the interactions in these materials have been estimated by
ab initio quantum chemistry [15], and by microscopic
superexchange calculations [16]. In addition, recent theo-
retical studies indicate that the QSL phase of the Kitaev
model is stable with respect to small Heisenberg perturba-
tions [10,17–19].
Raman scattering is a valuable tool for understanding

antiferromagnetically ordered transition metal oxides
because its polarization dependence allows us to probe
different symmetry properties of the underlying magnetic
state [20], e.g., in frustrated triangular antiferromagnets
[21,22], and in high-Tc superconductor parent compounds
[23–26]. In Mott insulators, the Raman process couples a
dynamically induced electron-hole pair with “two-magnon
states” which reflect the underlying magnetic phase even if
a simple spin wave picture of the low energy excitations is
not applicable, e.g., in one-dimensional spin chains [27]
and 2D QSLs [28,29]. In general, due to the lack of local
order a very weak polarization dependence is conjectured
to be one of the key signatures of QSLs [28]. Indeed, recent
Raman scattering experiments revealed spin-liquid-like
features in the Heisenberg spin 1=2 kagome-lattice anti-
ferromagnet, Herbertsmithite ZnCu3ðOHÞ6Cl2 [30].
Clearly, a detailed quantitative analysis of Raman scat-

tering in a spin liquid is called for, not least because the
experimental task of diagnosing QSLs remains a challenge.
In this Letter, we report on our theoretical study of inelastic
Raman scattering in a QSL, which is done in the framework
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of the Kitaev-Heisenberg model, and in the limit of small
Heisenberg exchange [10]. Given the difficulty of neutron
scattering experiments with compounds hosting iridium
ions [31], our study may be of special interest for the
A2IrO3 series. The central result of this Letter is the
identification of signatures of quasiparticle fractionaliza-
tion, a hallmark of topologically ordered phases, in the
dynamical Raman scattering response. To leading order in
the Heisenberg exchange, and in the Majorana fermion
density of states, we obtain the dominant contributions to
the response IðωÞ ¼ IKðωÞ þ IHðωÞ. Here, IKðωÞ origi-
nates from the Kitaev exchange, and IHðωÞ is the result of
the Heisenberg perturbation. Our approximation amounts
to taking the ground state of the integrable Kitaev model as
the ground state of the KH model. However, the calculation
of the response goes a step beyond integrability by
including contributions to the Raman response that arise
from integrability-breaking Heisenberg terms.
In the remainder of the Letter, after introducing the KH

model, we present the derivation of the Raman vertex. We
then outline the calculation of IK and IH, and discuss their
characteristic features. We close with remarks on the rel-
evance of our results to a broader class of Hamiltonians and
observables.
The model.—The Hamiltonian of the KH model reads

Ĥ ¼ −JK
X

hijia
σ̂ai σ̂

a
j þ JH

X

hiji
σ̂i · σ̂j; ð1Þ

which reduces to the original Kitaev model for JH ¼ 0. As
shown in Kitaev’s seminal work, the model can be solved
exactly in this limit by representing the spin-1=2 operators
σ̂ai in terms of fourMajorana fermions b̂xi ; b̂

y
i ; b̂

z
i , and ĉi such

that σ̂ai ¼ iĉib̂
a
i , which satisfy the anticommutation rela-

tions, fb̂ai ;b̂a0j g¼2δijδa;a0 , fĉi;ĉjg¼2δij, and fĉi;b̂ajg¼0.
For our purposes it is convenient to introduce complex
bond fermions χ̂†hijia ¼ ðb̂ai − ib̂aj Þ=2, by combining two b̂

Majorana operators on adjacent sites. The Kitaev contribu-
tion in Eq. (1) then takes the form

ĤK ¼ iJK
X

hijia
ûhijia ĉiĉj; ð2Þ

where bond operators ûhijia ¼ ib̂ai b̂
a
j ¼ 2χ̂†hijia χ̂hijia − 1 are

constants of motion for ĤK, i.e., ½ĤK; ûhijia � ¼ 0. The

Hilbert space in which ĤK acts can now be decomposed
into the gauge jFi and matter jMi sectors. We denote the
ground state of ĤK by j0i ¼ jF0i ⊗ jM0i, in which
ûhijia jF0i ¼ þ1jF0i; i.e., we replace the bond operators
by their ground-state eigenvaluesþ1. The Kitaev part of the
Hamiltonian then assumes a quadratic form in Majorana
fermions ĉi, and can be diagonalized. To this end, we first
combine two Majorana ĉ fermions from two sublattices in
the unit cell to form a complex fermion (a matter fermion)

f̂r ¼ ðĉA;r þ iĉB;rÞ=2. After a Fourier transform, followed
by a Bogoliubov transformation f̂q ¼ cos θqâqþ
i sin θqâ

†
−q, the Hamiltonian of Eq. (2) in the ground-

state flux sector is diagonalized Ĥ0 ¼ ĤK;F0
¼P

qjsqjð2â†qâq − 1Þ, where sq¼JKð1þeiq·n1þeiq·n2Þ, and
tan 2θq ¼ −Im½sq�=Re½sq�. The primitive lattice vectors n1,
n2 are shown in Fig. 1. The ground state of the matter sector
jM0i is defined by the condition that âqjM0i ¼ 0 for all q,
and the ground-state energy E0 ¼ −

P
qjsqj.

We note that the Hamiltonian ĤK defined in Eq. (2) acts
in the enlarged Hilbert space, and has a local Z2 gauge
invariance. The fermionic spectrum can thus be enumerated
by the configurations fϕ⬡g of Z2 fluxes on hexagons; here
ϕ⬡ ¼ Q

hiji∈⬡uij is a product of bond variables. The
fermionic ground state lives in the flux-free sector,
i.e., when ϕ⬡ ¼ þ1 on all hexagons. The physical
states jΨphysi ¼ P̂jΨi are defined using a projector
P̂ ¼ 1

2
P̂0½1þ ð−1ÞNχ ð−1ÞNf �, where P̂0 is the sum of all

operators which change bond fermion numbers in an
inequivalent way [2], and Nχ=f denote bond or matter
fermion number operators. For a given state the total parity
of Nχ þ Nf is always even and is a conserved quantity,
whereas the parity of the corresponding bond or matter
sectors can change as a result of a gauge transformation. In
the remainder we use the property that for a large class of
operators, namely, those that do not change the bond
fermion number, the matrix elements in projected and
unprojected states are the same [32–34].
Upon addition of small nonzero Heisenberg exchanges

to the Hamiltonian ðJH ≠ 0Þ, the Kitaev QSL states remain
stable, with ultra-short-ranged (nearest neighbor only)
spin correlations replaced by exponentially decaying ones
[10,17]. We assume in the following that λ ¼ JH=JK ≪ 1
and take into account the Heisenberg terms, perturbatively.
Raman operator.—We derive the Raman vertex operator

along the lines of the Loudon-Fleury approach [35,36]. The
vertex is given by the photon-induced superexchange,
which for the KH model, contains two contributions R̂ ¼
R̂K þ R̂H (the counterpart of the Loudon-Fleury vertex for
the Heisenberg model)

R̂ ¼
X

hijia
ðϵ̂in · daÞðϵ̂out · daÞðKK σ̂

a
i σ̂

a
j þ KHσ̂i · σ̂jÞ; ð3Þ

where da denote lattice vectors, and ϵ̂in=out are polarization
vectors of the incident or outgoing photons. The constants
KK ∝ JK and KH ∝ JH, hence, λ ¼ KH=KK ≪ 1.
The Raman response of the KH model (1) is related to

the Fourier transform IðωÞ ¼ R
∞
−∞ dteiωtiFðtÞ of the corre-

lation function iFðtÞ ¼ hR̂ðtÞR̂ð0Þi, where the average is
taken with respect to the ground state jΨ0i of the KH
Hamiltonian, and the operators R̂ðtÞ are given in their
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Heisenberg representation. After switching to the interac-
tion representation treating ĤH as the interaction, the
correlation function assumes the form

FðtÞ ¼ −ih0jTK½R̂ðtÞR̂ð0Þe−i
R
CK

ĤHðt0Þdt0 �j0i; ð4Þ

where time-ordering TK and the integral are calculated
along the Keldysh contour (with the Heisenberg term
adiabatically switched on and off at t → −∞). Note that
the expectation value is taken with respect to the ground
state j0i of the Kitaev Hamiltonian Eq. (2). Starting from
Eq. (4) we perturbatively compute the response by expand-
ing the exponent in powers of λ ¼ JH=JK; see
Supplemental Material [37]. To leading order in λ, and
neglecting long-range correlations of the Majorana fer-
mions containing higher order terms in density of states,
we obtain two dominant contributions to the response
FðtÞ ≈ FKðtÞ þ FHðtÞ.
First, let us consider the Raman response of the unper-

turbed Kitaev model, iFKðtÞ ¼ h0jT½R̂KðtÞR̂Kð0Þ�j0i, here
T denotes the standard time ordering. In terms of the
quasiparticle operators âq which diagonalize the flux-free
Hamiltonian (2), the Raman operator is given by

R̂K ¼
X

q

fðh0q cos 2θq − h00q sin 2θqÞâ†qâq

þ iðh0q sin 2θq þ h00q cos 2θqÞâ†qâ†−q þ H:c:g; ð5Þ

where h0q and h00q denote the real and imaginary parts of
hq ≡ K

P
3
a¼1ðϵ̂in · daÞðϵ̂out · daÞeiq·na with n0 ¼ ð0; 0Þ and

n1;n2 defined in Fig. 1. Then

IKðωÞ ¼ 4π
X

q

δðω − 4jsqjÞðIm½hqs�q�=jsqjÞ2: ð6Þ

Next, we obtain the leading contribution to the Raman
response arising from the Heisenberg exchange
iFHðtÞ ¼ h0jT½R̂HðtÞR̂Hð0Þj0i. A typical term in R̂H,
e.g., on the z bond, contains operators ∝ σ̂xA;rσ̂

x
B;rþ

σ̂yA;rσ̂
y
B;r. The spin operator written in terms of Majorana

fermions, e.g. σ̂aA;r ¼ icA;rðχhA;r;B;rþnaia þ χ†hA;r;B;rþnaiaÞ,
creates a matter fermion ĉi, and changes bond fermion
number χ, which corresponds to flipping of the sign of two
Z2 fluxes on the plaquettes sharing the bond (here the
corresponding bond is of the x or y type). The combined
effect of these terms in R̂H is to insert four fluxes around
the z bond at site r; see Fig. 1. The Z2 fluxes have to be
annihilated by the corresponding term in the other Raman
operator in iFHðtÞ in order to have a nonzero expectation
value with respect to j0i. Consequently, the Heisenberg
Raman response FH can be decomposed into a sum
over individual bonds FHðtÞ ¼

P
a¼x;y;z

P
r FH;aðr; tÞ.

Below, we focus on contributions from the z bond (con-
tributions from the x and y bonds can be obtained by
symmetry).
The correlator FH;zðr; tÞ contains two types of matrix

elements, hσ̂xðtÞσ̂xðtÞσ̂xð0Þσ̂xð0Þi, and the off-diagonal
ones hσ̂xðtÞσ̂xðtÞσ̂yð0Þσ̂yð0Þi. The corresponding correla-
tors are denoted as FxxðtÞ and FxyðtÞ. The former can be
calculated without projection onto the physical states.
However, the off-diagonal term conserves the flux sector,
but changes the number of bond fermions, χ̂; thus, one has
to use the projectors in the calculation of FxyðtÞ [2,41]; see
Supplemental Material for details [37].
The calculation of the Heisenberg contribution of the

correlator can be cast in the form of a local quantum
quench, along the lines of the calculation of the dynamical
spin correlations in the Kitaev model [32,42]. The Raman
response can be expressed entirely in terms of matter
fermions acting in the ground-state flux sector jF0i,
subjected to the time-dependent local potential V̂,

Fxx
H;zðr; tÞ ¼ −ihM0jeitĤ0e−itðĤ0þV̂rÞjM0i;

Fxy
H;zðr; tÞ ¼ −ihM0jeitĤ0e−itðĤ0þV̂rÞcA;rcB;rjM0i: ð7Þ

Here, the Hamiltonian Ĥ0 þ V̂r differs from Ĥ0 in the sign
of the Majorana hopping for the two y bonds attached to
sites ðA; rÞ and ðB; rÞ. The locally perturbed Hamiltonian
belongs to the sector with four extra fluxes shown in
Fig. 1(a). The problem is now reduced to the one of a local
quantum quench, where the ground state jM0i of Ĥ0 is time
evolved with a different Hamiltonian Ĥ0 þ V̂r. Note that in
the calculation of dynamic spin correlators in the Kitaev
model, V̂r ∝ f̂†r f̂r assumes the form of a local on-site
potential [42], which is switched on at t ¼ 0. Here we have
a four-flux rather than two-flux quench and the expression
for V̂r in terms of complex bond fermions is complicated.
The correlators can be evaluated numerically using

FIG. 1 (color online). A honeycomb lattice is shown in panel
(a). Shaded yellow region indicates the unit cell with two sites A
and B. Three inequivalent nearest-neighbor bonds x; y; z, are
shown in red, green, and blue. The problem of calculating the
Raman response in the presence of Heisenberg terms can be
mapped onto a local quantum quench, where four adjoining Z2

fluxes, shown as gray hexagons, are inserted. The contribution
from the nearest-neighbor σyArσ

y
Br interactions along the z bond,

which flips the sign of the link variables is shown as green dashed
bonds. Panel (b) displays the density of states NðωÞ of Majorana
fermions in the ground state flux sector.
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Lehmann representation. To this end, we introduce a basis
jλi of many-body eigenstates of the Hamiltonian Ĥ0 þ V̂r.
We denote the corresponding energy as Eλ and the ground-
state energy of Ĥ0 as E0, and obtain

IxxH;zðωÞ ¼ 2π
X

λ

δðω − ΔλÞjhM0jλij2;

IxyH;zðωÞ ¼ 2π
X

λ

δðω − ΔλÞhM0jλihλjĉA;rĉB;rjM0i; ð8Þ

where Δλ ¼ Eλ − E0. Note that nonvanishing contributions
arise only from the excited states jλi having the same parity
as the ground state jM0i of matter fermions. We evaluate

numerically the dominant contributions I½0�H ðωÞ; I½2�H ðωÞ
arising from the zero and two-particle processes; details
are relegated to the Supplemental Material [37].
Results.—The Raman response, shown in Fig. 2, is

markedly different from known strongly polarization-
dependent behavior seen in the two-magnon response of
antiferromagnetically ordered systems [20–23]. In fact, the
characteristic features of the overall weakly polarization-
dependent response IðωÞ can be related either to the flux, or
to the Majorana fermion sector: First, a strong polarization-
independent Kitaev contribution IKðωÞ reflects the

Majorana fermion density of states in the ground state
flux sector; see Fig. 1(b). It shows a linear onset at low
energies, a sharp band edge at 12JK , and a dip at 4JK due to
the van Hove singularity. Second, a weaker Heisenberg
contribution is related to flux excitations, e.g., IHðωÞ ¼ 0
for ω < ΔF with the flux gap ΔF which is the difference in
ground-state energy of the zero- and four-flux sector. It has
a characteristic polarization dependence with a simple
overall intensity dependence on the relative angle θ
between incoming and outgoing photons as shown in the
inset of Fig. 2. It arises because the Heisenberg perturbation
belongs to a different irreducible representation of the
lattice translation group than both the Kitaev Hamiltonian
and its QSL ground state [28]. A striking feature is a sharp
peak at the energy of the four-flux gap ΔF ¼ 0.446JK
originating from the zero-particle contribution (the overlap
between ground states); see Eq. (8). This is a clear signature
of the flux excitation in the isotropic gapless QSL
(JxK ¼ JyK ¼ JzK). Note that usually sharp lines in Raman
scattering are attributed to optical phonons that appear at
different energy scales [20]. In addition, IHðωÞ has a broad
response in energy reflecting the two-particle density of
states of matter fermions propagating in the background of
four fluxes.
Our analysis of Raman response relies on the stability of

the Kitaev QSL with respect to the addition of small
Heisenberg exchanges (note that the latter is believed to be
small in the proposed Kitaev model realizations in iridates).
We expect that for small Heisenberg couplings, the features
which we find are robust, being only somewhat renormal-
ized by nonlocal fluctuations, such as the ones originating
from the dynamics of the fluxes generated by the
Heisenberg exchange (or disorder, which is present in real
materials). Crucially, there is a window of parameters
where the features which we find should be observable,
thus making Raman scattering an important experimental
tool for diagnosing Kitaev QSLs.
Discussion.—The calculation of the Heisenberg

contribution IHðωÞ to the Raman response is equivalent
to a nonequilibrium problem with a sudden insertion of four
fluxes. The Raman vertex of the Kitaev model does not
change the flux sector, but the integrability breaking
contribution due to Heisenberg interactions does. The latter
takes the form of a quantum quench which generates an
unusual sharp δ-function component in the response.
In general, we expect that for Kitaev-like models the

calculation of the correlation functions hÔðtÞÔð0Þi, whose
operators Ô change the flux sector, can be mapped to a
local quantum quench for Majorana fermions by exploiting
selection rules and by eliminating flux degrees of freedom
as pioneered for the spin correlation function in the original
Kitaev model [32]. This is true, for example, for the
calculation of spin correlations in generalizations of the
honeycomb model to higher dimensions [5–8,12] (or
possibly even to different classes [2–4]). At low

FIG. 2 (color online). The Raman response IðωÞ (black curve)
and its separate contributions (here JK ¼ 10JH). The Kitaev
contribution IKðωÞ, shown in green, is independent of the photon
polarization and shows characteristic features of the matter
fermion density of states, including the linear onset at low
energies and the band edge at 12JK , note an additional factor
of 2 in Eq. (6). The van Hove singularity at 2JK is seen as a small
dip at 4JK (due to a discontinuity of the derivative). The zero and
two-particle responses, I½0�H ðωÞ and I½2�H ðωÞ, of the Heisenberg
contribution are shown in blue and red (dashed line), respectively.
A δ-function peak occurs at the four flux gap ΔF ¼ 0.446JK ,
while the frequency dependence of the two-particle contribution
reflects the local two-particle density of states in the presence of
four fluxes. The overall polarization dependence of IHðωÞ on the
relative angle θ between incoming and outgoing photons is
shown in the inset. Accordingly, IKðωÞ only has contributions
from the doublet Eg-symmetry component, while IHðωÞ has both
A1g and Eg.
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temperatures the response is mainly determined by the low
energy matter fermions; e.g., depending on the Fermi
surface topology, a singular behavior may appear.
Overall, while a QSL might be stable with respect to
sufficiently weak integrability-breaking interactions, the
change in response functions can be remarkable, revealing
basic properties of the underlying phase by connecting
otherwise orthogonal sectors of the emergent gauge flux.
In conclusion, we have shown that Raman scattering

renders visible both flux and Majorana fermion excitations
potentially relevant to iridates. It thus presents a valuable
tool for diagnosing topological quantum states.
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