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We study fermionic superfluidity in strongly anisotropic optical lattices with attractive interactions
utilizing the cluster dynamical mean-field theory method, and focusing in particular on the role of nonlocal
quantum fluctuations. We show that nonlocal quantum fluctuations impact the BCS superfluid transition
dramatically. Moreover, we show that exotic superfluid states with a delicate order parameter structure,
such as the Fulde-Ferrell-Larkin-Ovchinnikov phase driven by spin population imbalance, can emerge even
in the presence of such strong fluctuations.
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Mean-field theories have been tremendously successful
at furthering our understanding of quantum many-body
physics. For instance, the explanation of conventional
superconductivity based on the BCS theory is hailed as
one of the highest achievements in condensed matter
physics. Nonetheless, it is well known that the mean-field
treatment in general can facilitate a qualitative description
of the physical system—at best. In the context of lattice
models, dynamical mean-field theory (DMFT) constitutes a
substantial improvement over static mean-field treatments
by including fully the effect of local quantum fluctuations.
Yet, even the predictions of DMFT may fail in the presence
of nonlocal quantum fluctuations, i.e., nonlocal contribu-
tions to the self-energy of the system. Ultimately, the
emergence of an ordered phase can be firmly predicted only
if the nonlocal quantum fluctuations are properly accounted
for. Moreover, key information of the physical system can
be encoded to the nonlocal structure of the self-energy. This
is true, for example, for the d-wave symmetry of high
temperature superconductors.
The elusive, yet ubiquitous, nature of nonlocal quantum

fluctuations raises the question of whether it is possible to
identify physical systems where the effects of these
fluctuations could be studied in a systematic manner. In
this respect, ultracold gas setups with controllable dimen-
sionality seem to offer a natural path forward regarding that
the nonlocal fluctuations are most prominent in low-
dimensional systems. The dimensional crossover from
1D to higher dimensional systems has garnered broad
interest. From the theoretical point of view, it is anticipated
that phases of matter prominent in 1D models can be
stabilized when brought to a higher dimensionality [1].
Experimentally, the strong dimensional anisotropy may
also offer advantages over a more straightforward 3D
geometry, as demonstrated in a recent work on repulsively

interacting fermions in an anisotropic optical lattice, where
the temperature scale of antiferromagnetic correlations was
reached [2–4].
One of the most intriguing many-body phenomena

which can be approached in the context of dimensionally
tunable lattices is that of fermionic superfluidity. The
paradigm case of fermionic superfluidity with s-wave
spin-singlet BCS pairing could be studied in an exper-
imental realization of the attractively interacting Fermi-
Hubbard model [5]. Moreover, there is a wide consensus
that this system might demonstrate exotic forms of super-
fluid pairing when subjected to, e.g., a spin population
imbalance. The prospects of realizing such forms of
conventional and exotic superfluidity in systems of inter-
mediate dimensionality have been discussed broadly in the
literature [6–11]. However, the role of nonlocal quantum
fluctuations remains to a large degree an open question in
these systems even in the case of the conventional BCS
pairing.
In this work, we study an attractively interacting two-

component Fermi gas in a strongly anisotropic cubic
optical lattice; see Fig. 1(a). We compute the phase diagram
of this system using cluster and real-space variants of
DMFT, and investigate the effect of nonlocal quantum
fluctuations on the different possible forms of superfluidity
occurring in the system.
The system is described by the Hubbard Hamiltonian

H ¼ −t∥
X
jlσ

ðc†jlσcðjþ1Þlσ þ H:c:Þ − t⊥
X
hll0i

X
jσ

c†jlσcjl0σ

þ U
X
jl

n̂jl↑n̂jl↓ −
X
jlσ

μσn̂jlσ: ð1Þ

Here, the index j is used to label the lattice sites within a
single 1D chain, while the chains are labeled with the index
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l. The operator cjlσ (c†jlσ) annihilates (creates) a fermion
with pseudospin σ ¼ ↑;↓ at site j in chain l. In the kinetic
term, t∥ and t⊥ are the hoppings within the chain and
between the chains, respectively, while the on-site inter-
action strength is denoted by U and the spin-dependent
chemical potential by μσ. In the following, we give all
energies and temperatures in the units of t∥, and set t∥ ¼ 1.
At t⊥ ¼ 0 the system is a collection of independent 1D
chains whereas at t⊥ ¼ 1 we have a 3D cubic lattice. The
region 0 < t⊥ < 1 then defines a dimensional crossover
from 1D to 3D. In this regime the system is infinite in all
three spatial directions and the emergence of long range
order is possible. We study the system with an attractive
interaction U ¼ −3. Moreover, we describe the superfluid
symmetry breaking using Nambu formalism. Thus, in the

following equations, the Green’s function and self-energy
are interpreted in the form of 2 × 2 Nambu blocks which
are labeled by the position.
We solve the equilibrium state of the system using a

cluster variant of DMFT [13,14]. In our cluster DMFT
model we assume a periodic boundary condition within a
single chain and treat the whole chain as a single cluster in
the algorithm. In the directions perpendicular to the 1 D
chains, we assume that the self-energy of the system is
local, i.e.,

Σjj0;ll0 ðiωnÞ ¼ δl;l0Σjj0;lðiωnÞ; ð2Þ

where iωn is the Matsubara frequency. In other words, we
take the self-energy as block diagonal in the interchain
index l. This assumption reflects the fact that in the quasi-
1D regime the dominant fluctuations occur in the intrachain
direction. Notice also that this formulation is exact in the
1D limit. A similar approach has been utilized to study the
Mott and Luttinger liquid transitions of the repulsive
Hubbard model in quasi-1D lattices [15–17]. On the
assumption that the system is homogeneous in the inter-
chain direction, the self-energy is independent of the chain
index l, and moreover, the Green’s function of the system is
diagonal in the transverse quasimomentum k⊥ ¼ ðkx; kyÞ.
The Dyson equation for the Green’s function of the system
is then given by

½Gðk⊥; iωnÞ�−1jj0 ¼ ½G0
∥ðiωnÞ�−1jj0 − ϵk⊥σzδjj0 − Σjj0 ðiωnÞ:

ð3Þ
Here, G0

∥ is the noninteracting Green’s function of a single
chain, while ϵk⊥ is the transverse single particle dispersion
given by ϵk⊥ ≡ −2t⊥ðcos kx þ cos kyÞ and σz the Pauli z
matrix. Taking a single chain as a cluster, the bath Green’s
function for the cluster DMFT becomes

½G0ðiωnÞ�−1jj0 ¼
�X

k⊥
Gðk⊥; iωnÞ

�
−1

jj0

þ Σjj0 ðiωnÞ: ð4Þ

We employ the continuous-time auxiliary-field quantum
Monte Carlo method in Nambu formalism to solve the
impurity problem of the DMFT iteration [18–20]. That is,
within the cluster, all local and nonlocal fluctuations are
taken into account. To facilitate the large expansion order
imposed by the low temperature and the large cluster size of
the simulations, we utilize the delayed spin-flip update [21]
and submatrix update [22] techniques to speed up the
computation.
Our approach allows us to study the superfluid pairing on

a general basis, including also the possibility of spatially
nonuniform solutions. For example, in the presence of spin
polarization the two-component Fermi gas may enter the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase which
involves spontaneous breaking of the translation invariance
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FIG. 1 (color online). (a) A schematic of the system geometry.
The optical lattice consists of one-dimensional chains which are
coupled to form an anisotropic cubic lattice. In our cluster DMFT
scheme, the 1D chain is treated as a single cluster with periodic
boundaries. (b) The BCS and FFLO phase transitions as a
function of the interchain hopping t⊥ both in the cluster DMFT
model (with nonlocal quantum fluctuations) and the real-space
DMFT model (excluding nonlocal quantum fluctuations). The
critical temperature of the BCS state is given by the continuous
and dashed blue line for the cluster ½c� and single-site [s] models,
respectively. Similarly, the FFLO critical temperature is given by
the green line for the cluster ½c� model and by the dashed green
line for the single-site ½s� model. As a point of contrast, the static
mean-field prediction of the BCS critical temperature is Tc;MF ¼
0.52 in the corresponding parameter range, while the FFLO
critical temperature would be on the order of 0.5Tc;MF [12]. In
each case the system is at half-filling, and the FFLO transition is
found by varying the spin polarization of the system while
maintaining the total filling fraction constant. For t⊥ ≥ 0.15, we
perform the calculations in a cluster of Nc ¼ 36 lattice sites,
whereas for t⊥ ¼ 0.1 a cluster size of Nc ¼ 42 is required for
convergence.
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of the superfluid state [23,24]. To give a point of contrast to
alternative approaches, the cellular DMFT method could be
criticized here for the explicit breaking of translation
invariance on the level of the method, which might favor
states with broken translation invariance. On the other
hand, enforcing the spatial symmetry as in the dynamical
cluster approximation (DCA) would contain precisely the
opposite problem. Thus, we chose to adopt a periodic
boundary condition which allows for solutions with broken
translation invariance without introducing any such broken
symmetry on the level of the computational method.
We define the superfluid order parameter as Δj ¼

−Uhc†j;↑c†j;↓i. Here, we identify the BCS state as the state
with nonzero and uniform Δj over the whole system. Since
Δj is defined as an anomalous expected value, this criterion
also implies long range order. The FFLO state is defined as
the state with Δj oscillating with position. In order to study
the FFLO mechanism we vary the spin polarization P ¼
ðN↑ − N↓Þ=ðN↑ þ N↓Þ through the spin-dependent chemi-
cal potentials, while keeping the total particle number
constant at half-filling.
The phase diagram of the system is presented in

Fig. 1(b). At t⊥ ¼ 0.3 the BCS critical temperature
obtained from cluster DMFT is Tc ¼ 0.12 and decreases
monotonically as the interchain hopping is reduced, reach-
ing a value of Tc ¼ 0.05 at t⊥ ¼ 0.1. Below t⊥ ¼ 0.1, we
are limited by the computational cost of the impurity
problem at cluster sizes and temperatures relevant for the
BCS transition. However, the results for finite t⊥ suggest
convergence to a critical temperature of zero at the 1D limit,
as is expected because of the Mermin-Wagner theorem.
To quantify the effect of the nonlocal quantum fluctua-

tions on the BCS state, let us compare the result to the
single-site DMFT calculations. We compute the phase
diagram of the system using single-site real-space
DMFT [25–28], where the main assumption is that the
self-energy is local. In this approximation, the expression
for the self-energy above simplifies further to
Σjj0 ðiωnÞ ¼ δj;j0ΣjðiωnÞ. Note that the self-energy is still
frequency dependent; i.e., the model contains all local
quantum fluctuations. The model reduces to static mean-
field theory if also the iωn dependence is completely
discarded. The lattice Dyson equation remains in the same
form as given in Eq. (3), while the quantum impurity model
of DMFT is now reduced to a single site problem with a
bath Green’s function given by

½G0
jðiωnÞ�−1 ¼

�X
k⊥
Gjjðk⊥; iωnÞ

�
−1

þ ΣjðiωnÞ: ð5Þ

Notice that each matrix element above is still a 2 × 2
Nambu block of the normal and anomalous on-site Green’s
functions or self-energies. Again, the reason for using the
real-space formulation is that it allows us to describe also
superfluid states with spatial symmetry breaking.

The single-site DMFT predicts a nearly constant critical
temperature for the BCS state with Tc ≈ 0.14 over the
corresponding parameter range. It is then readily apparent
that the rapid disappearance of superfluidity in the cluster
model cannot be attributed to changes in the noninteracting
density of states caused by the varying dimensionality.
Such effects would already be included to the single-site
model. Here, it should be noted that already the local
quantum fluctuations bring a substantial correction the
static mean-field prediction of the critical temperature
Tc;MF ¼ 0.52, though qualitatively the static mean-field
and single-site DMFT critical temperatures behave sim-
ilarly as a function of the interchain hopping.
In Fig. 2 we plot the self-energy of the system at a

constant temperature while varying the interchain hopping
t⊥. The figure demonstrates that the nonlocal component of
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FIG. 2 (color online). The dependence of the self-energy on the
dimensionality. In each panel we plot the normal spin-↑ and
anomalous Nambu components, Σ↑;ijðiωnÞ and SijðiωnÞ, of the
self-energy between sites i and j for the lowest Matsubara
frequency. Here, the system is at a temperature of T ¼ 0.08
and at half-filling with zero spin polarization. At (a) t⊥ ¼ 0.3 and
(b) t⊥ ¼ 0.2 this corresponds to the BCS state, while at
(c) t⊥ ¼ 0.1 the system is in the normal phase in which case
the anomalous self-energy is identically zero and thus not plotted.
The nonlocal quantum fluctuations grow substantially as the
interchain hopping t⊥ decreases. The oscillating structure of the
self-energy in i − j is predominantly a single particle signature
and corresponds to the Fermi momentum of the system. Note that
the BCS order parameter is chosen real and therefore the BCS
anomalous self-energy is also real.

PRL 113, 185301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 OCTOBER 2014

185301-3



the self-energy grows rapidly towards the 1D limit.
Therefore, we may conclude that the drastic decline of
the superfluid critical temperature is driven by the nonlocal
quantum fluctuations. Moreover, Fig. 2 indicates that the
cluster size of our simulations is sufficient to exhaust the
self-energy of an individual chain.
Let us now turn to the case of spin-polarized systems.

The fact that quasi-1D systems would favor the FFLO state
in comparison to 3D systems was first suggested based on
mean-field studies of a system of coupled 1D tubes [8]. The
same qualitative conclusion was reached in [9] using
effective field theory and treating the intertube coupling
as a perturbation. On the other hand, real-space DMFT
studies of coupled chains [10,11] suggested rather that the
FFLO state is important in the entire dimensional crossover
from quasi-1D to 3D lattices. One reason for differing
predictions can be that the stabilization of FFLO in lattices
due to nesting [12] is stronger for coupled chains than
coupled tubes. Another possibility is a different treatment
of quantum fluctuations. While the FFLO signatures have
been absent in experiments on spin-polarized Fermi gases
in continuum [29,30], experiments in 1D tubes [31] are
consistent with its possible existence.
Now, considering the large effect of the quantum

fluctuations on the BCS transition, one might anticipate
that the FFLO state which involves a delicate spatial
symmetry breaking would be totally destroyed by the
nonlocal quantum fluctuations. Here we show that, in fact,
the FFLO state survives even in the presence of nonlocal
quantum fluctuations, as shown in Fig. 1(b). The qualitative
trend is similar to the BCS transition; the critical temper-
ature of the FFLO phase decreases when the interchain
hopping is reduced. At t⊥ ¼ 0.2 we find that the critical
temperature of FFLO in the cluster model is lowered by a
factor of 0.67 in comparison to the single-site approxima-
tion, while for the BCS critical temperature the correspond-
ing ratio would be 0.69. At the critical temperatures
reported in Fig. 1(b) the polarization of the system varies
from P ¼ 3% at t⊥ ¼ 0.2 to P ¼ 4% at t⊥ ¼ 0.3 in the
cluster simulations, whereas in the case of single-site
DMFT we find a polarization of P ¼ 6% in the same
range. Below t⊥ ¼ 0.2 we cannot reach the FFLO phase in
our simulations as we are limited by the scaling of the
computational cost.
Throughout the data, we find Δj in FFLO state an

approximately sinusoidal function. Moreover, we find that
the oscillating order parameter is accompanied by a spatial
modulation of the density with half the period of the order
parameter, as demonstrated in Fig. 3(a). This agrees with
the standard characterization of the FFLO state. In Fig. 3(b)
we the structure of the non-local part of the self-energy in
the FFLO state. The similar, approximately sinusoidal,
dependence on the position is found at all Matsubara
frequencies, while the contribution of the non-local fluc-
tuations is the largest at low frequencies, as expected from

the analytical high frequency asymptotes. The fact that
the cluster self-energy retains the same periodic structure at
all frequencies, and furthermore, that the local part of
the self-energy is dominant is suggesting that FFLO
character of the many-body state is robust and experimen-
tally discernible from a polarized superfluid by probes or
imaging techniques sensitive to density modulations.
There is an additional point to be made about the

convergence with cluster size in the spin-polarized case.
In our simulations, we do not find the FFLO phase at
cluster sizes below Nc ≈ 30. The likely reason here is that
the lowest possible non-zero pairing momentum,
q ¼ 2π=Nc, leads to a too large increase in the kinetic
energy of the Cooper pairs at Nc ≲ 30. In other words, the
FFLO transition is in essence orbitally limited in small
clusters. We also investigated cluster sizes larger than Nc ¼
36 up to Nc ¼ 42 at t⊥ ¼ 0.3 and found no change in
the FFLO transition suggesting that the cluster size Nc ¼
36 is sufficient. Finally, it is interesting to speculate, if
the nonlocal quantum fluctuations can in fact be favorable
for the spatial symmetry breaking of the FFLO state by
destabilizing the spatially uniform BCS state. The data
at t⊥ ¼ 0.3 of Fig. 1(b) do in fact suggest a scenario
along these lines. However, drawing this conclusion
fully would require a further analysis of the role of the
interchain quantum fluctuations on the FFLO state by
extending the cluster formalism beyond the single chain
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FIG. 3 (color online). The FFLO state at t⊥ ¼ 0.25. Here, the
temperature is T ¼ 0.05 and the polarization P ¼ 0.035. (a) The
density difference N↑ − N↓ and the order parameter Δ as a
function of the cluster site i. In our results, the translation
invariance of the system is spontaneously broken and in a
particular simulation in the FFLO regime; e.g., the minima of
the order parameter and density may fall on any given lattice site.
(b) The absolute value of the anomalous part of the self-energy,
SijðiωnÞ, plotted as a function of the cluster site i and the distance
i − j to the site j for the lowest Matsubara frequency.
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approximation, and is beyond the scope of the present
work.
In summary, we have shown that nonlocal quantum

fluctuations play a crucial role in the low temperature
properties of the attractive Hubbard model and affect
heavily the fermionic superfluidity. Still, we find that even
the exotic FFLO superfluid with broken translation invari-
ance can endure the effect of the fluctuations, and possibly
even compete better with the uniform polarized superfluid
state because of the fluctuations. Our results suggest that
the buildup of nonlocal quantum fluctuations can be
studied in a systematic way in experiments on ultracold
atoms in anisotropic optical lattices. An interesting future
direction would also be to study the interplay of nonlocal
quantum fluctuations and nearest neighbor interactions.
The experimental study of such interactions is evolving
rapidly at the moment [32], and they are likely to have
important implications to the phase diagram of the system
based on 1D predictions [33].
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