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The contribution of small scale turbulent fluctuations to the induction of a mean magnetic field
is investigated in our liquid sodium spherical Couette experiment with an imposed magnetic field.
An inversion technique is applied to a large number of measurements at Rm ≈ 100 to obtain radial profiles
of the α and β effects and maps of the mean flow. It appears that the small scale turbulent fluctuations can
be modeled as a strong contribution to the magnetic diffusivity that is negative in the interior region and
positive close to the outer shell. Direct numerical simulations of our experiment support these results.
The lowering of the effective magnetic diffusivity by small scale fluctuations implies that turbulence can
actually help to achieve self-generation of large scale magnetic fields.
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The Earth, the Sun, and many other astrophysical
bodies produce their own magnetic field by dynamo action,
where the induction of a magnetic field by fluid motion
overcomes the Joule dissipation. In all astrophysical bodies,
the conduction fluid undergoes turbulent motion, which
can also significantly affect the induction of a large-scale
magnetic field by either enhancing it or weakening it.
It is therefore of primary interest to quantify the role of
these fluctuations in the dynamo problem.
The induction equation for the mean magnetic field hBi

reads

∂hBi
∂t ¼ ∇ × ðhUi × hBi þ EÞ þ ηΔhBi; ð1Þ

where hUi is the mean velocity field, η ¼ ðμ0σÞ−1 is
the magnetic diffusivity (involving the magnetic per-
meability μ0 and the conductivity of the fluid σ), and
E ¼ h ~u × ~bi is the mean electromotive force (emf) due to
small scale fluctuating magnetic ~b and velocity ~u fields.
The relative strength between the inductive and dissipa-
tive effects is given by the magnetic Reynolds number
Rm ¼ UL=η (U and L are the characteristic velocity
and the characteristic length scale). When there is a scale
separation between the turbulent fluctuations and the
mean flow, we can follow the mean-field theory and
expand the emf in terms of mean magnetic quantities:
E ¼ αhBi þ β∇ × hBi. For homogeneous isotropic tur-
bulence, α and β are scalar quantities. α is related to the
flow helicity and results in an electrical current aligned
with the mean magnetic field, whereas β can be inter-
preted as a turbulent diffusivity effectively increasing
(β > 0) or decreasing (β < 0) electrical currents. The
effective magnetic diffusivity ηeff ¼ ηþ β can have
tremendous effects on energy dissipation and on dynamo
action by reducing or increasing the effective magnetic
Reynolds number Rmeff ¼ UL=ηeff.

However, direct determination of these small-scale con-
tributions remains a challenging issue for experimental
studies and numerical simulations.
First generation dynamo experiments were designed

to show that turbulent flows with strong geometrically
imposed helicity could self-generate their own magnetic
fields. Since the success of Riga [1] and Karlsruhe [2]
dynamos, several other liquid metal experiments have
sought to overcome the effects of magnetohydrodynamic
turbulence in less constrained, more geophysically relevant,
flow geometries. Unfortunately, dynamo action remains
elusive, and the effective contribution of small-scale
motions to large-scale magnetic fields remains poorly
understood, though the small-scale motions seems to work
against dynamo action [3,4].
In the Perm torus-shaped liquid sodium experiment, the

effective magnetic diffusivity was inferred from phase shift
measurements of an alternating magnetic signal, indicating
turbulent increases inmagnetic diffusivityof up to≈30% [4].
The Madison experiment, a sphere containing two counter-
rotating helical vortices, found that an externally applied
magnetic field was weakened by about 20% at Rm ¼ 130,
which they interpreted as a negative global α effect [3]. The
installation of an equatorial baffle was found to reduce
the amplitude of the largest-scale turbulent eddies and hence
the α effect [5]. In the same setup, Rahbarnia et al. [6]
measured the local emf directly, finding contributions from
both α and β, but with a dominant β effect. They reported an
increase in magnetic diffusivity of about 30%. The von
Kármán Sodium experiment, a cylinder containing another
two-vortex liquid sodium flow, reported a magnetic diffu-
sivity increase of about 100% [7].
We analyze data from the Derviche Tourneur Sodium

(DTS) experiment, a magnetized spherical Couette flow
experiment sketched in Fig. 1. Forty liters of liquid sodium
are enclosed between an inner sphere (radius ri ¼ 74 mm)
and a concentric outer stainless steel shell (inner radius
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ro ¼ 210 mm). The inner sphere can rotate around the
vertical axis at rates up to f ¼ 30 Hz, yielding a maximal
value of 94 for the magnetic Reynolds number defined as
Rm ¼ 2πfr2o=η. The inner sphere consists of a copper shell
containing a strong permanent magnet, which produces a,
mostly dipolar, magnetic field pointing upwards along the
rotation axis. The intensity of the magnetic field decreases
from Bi ≃ 180 mT at the equator of the inner sphere to
Bo ≃ 7.1 mT at the equator of the outer shell. More details
are given in Ref. [8].
In a recent study [9], we developed a new strategy to

determine the mean velocity and induced magnetic fields.
Following earlier works [8,10], we collect ultrasound
Doppler velocity profiles, electric potential measurements,
global torque, and measurements of the induced magnetic
field inside the sodium layer to reconstruct meridional
maps of the mean flow and magnetic field at a given Rm,
taking into account the link established by the induction
equation. But we further constrain these fields by analyzing
the response of the fluid shell to a time-periodic magnetic
field, as in Frick et al. [4]. In our case, the time-periodic
signal simply results from the rotation of our central
magnet, whose small deviations from axisymmetry produce
a field varying at the rotation frequency and its harmonics.
We have expanded the complete magnetic potential of the
magnet in spherical harmonics up to degree 11 and order 6,

which we then use to compute the solution of the time-
dependent induction equation. The predictions for a given
mean velocity field are compared to actual magnetic
measurements inside the sodium shell at four latitudes
and at six radii, as depicted in Fig. 1. We construct a
nonlinear inversion scheme of the induction equation to
retrieve the mean axisymmetric (and equatorially symmet-
ric) toroidal and poloidal velocity fields that minimize the
difference between the predictions and all measurements at
a given rotation rate f of the inner sphere. Cabanes et al. [9]
discuss in detail the solutions and fits for Rm ¼ 28.
In the present study, we extend the analysis to the largest

available Rm ¼ 47, 72, and 94 (see Table I for details).
Figure 1 displays a meridional map of the angular velocity
inverted for Rm ¼ 94, and the field lines of the predicted
magnetic field. They confirm that, near the equator of the
inner sphere where the magnetic field is strong, the angular
velocity stays nearly constant along magnetic field lines
(Ferraro law [11]). That region displays superrotation,
while the flow becomes more geostrophic further away
from the inner sphere.
However, the mean velocity field alone does not fully

account for the measured mean magnetic field. Figueroa
et al. [12] point out that velocity fluctuations invade the
interior of the shell in the DTS experiment as the rotation
rate f increases, and that magnetic fluctuations always get
larger towards the inner sphere because of the strong
imposed magnetic field there. We therefore extend our
previous approach [9] to take into account the contribution
of turbulent fluctuations to the mean magnetic field.
Following earlier attempts [3,4,6], we choose to invert
for α and β, but since we expect that fluctuations will
strongly depend upon the intensity of the mean magnetic
field, we allow them to vary with radius. Note that time-
varying magnetic signals are particularly sensitive to the
effective magnetic diffusivity, hence to β [4,13].
We thus simultaneously invert for the mean axisymmet-

ric toroidal velocity field UTðr; θÞ and for radial profiles
αðrÞ and βðrÞ.UT is decomposed in spherical harmonics up
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FIG. 1 (color online). Sketch of the DTS experiment with its
liquid sodium contained between an outer stainless steel shell
(gray, with latitude labels in degrees) and an inner copper sphere
(orange), which spins as indicated by the red arrow around
the vertical rotation axis (here tilted for clarity). Left half of the
sphere: the field lines of the dipolar magnetic field imposed by
the central magnet are drawn on top of the contour map of the
fluid angular velocity ω (normalized by that of the inner sphere)
inverted from data measured for Rm ¼ 94. Right half of the
sphere: field lines of the total reconstructed magnetic field. The
field lines are strongly distorted by the flow (ω effect). The blue
cones mark the radial positions of the six magnetometers P1
(r ¼ radius=ro ¼ 0.99) to P6 (r ¼ 0.50), which measure the
azimuthal magnetic field. They can be placed at four different
latitudes (here −20°).

TABLE I. For each inner sphere rotation rate f, we list the
corresponding Rm, the total number Np of free parameters we
invert for, the total number Nd of data points including mean
measurements and time-varying magnetic data, and the associ-
ated global normalized misfit χ (the error-weighted rms differ-
ence between observations and predictions). The number of data
points is much smaller at high Rm as ultrasound Doppler
velocimetry is not operational. Values in parentheses are the
numbers obtained when we do not invert for α and β.

fðHzÞ Rm Np Nd χ

−9 28 108(96) 1130 1.5(1.8)
−15 47 108(96) 440 2.5(3.3)
−23 72 60(48) 230 2.5(4.9)
−30 94 60(48) 230 2.9(5.9)
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to lmax ¼ 8 (m ¼ 0) and in Chebyshev polynomials in
radius up to nmax ¼ 11. αðrÞ and βðrÞ are projected on
Chebyshev polynomials up to kmax ¼ 5, leading to

EðrÞ ¼
X5

k¼0

TkðrÞðαkhBi þ βk∇ × hBiÞ; ð2Þ

where Tk is the degree k Chebyshev polynomial of the first
kind and hBi is the total mean magnetic field, solution of
Eq. (1). Since the inversion is slightly nonlinear, we use the
linearized least-squares Bayesian method of Tarantola and
Valette [14], taking the a posteriori velocity model from a
lower Rm, upscaled to the new Rm, as the a priori velocity
model. We choose a zero value as the a priori model for all
αk and βk. The poloidal velocity field is at least 1 order of
magnitude smaller than the toroidal one. We do not invert
for it at Rm ¼ 72 and 94 but we include in the direct model
a meridional flow upscaled from the solution obtained at
Rm ¼ 47 [9]. We find that solving for the emf, which adds
only 12 degrees of freedom, reduces the global normalized
misfit significantly (see Table I).
Figure 2 shows the radial profiles of α and β (with their

a posteriorimodel errors) produced by the inversion of data

at Rm ¼ 28 and 72. The profiles for Rm ¼ 94 (not shown)
are almost the same as for Rm ¼ 72. α is normalized by
U0 ¼ 2πfro, and β by η. For the lower Rm value, we
observe practically no α effect, while the βðrÞ profile
indicates that the β effect increases strongly when going
from the Lorentz-force-dominated inner region to the
Coriolis-force-dominated outer region. It reaches values
of 1.7η near the outer boundary, where velocity fluctuations
are strongest [12]. For the higher Rm, some α effect is
required to match the data over most of the fluid domain.
The βðrÞ profile displays strongly negative values (down
to −0.3η) over almost the complete fluid shell, but rises
sharply to positive values near the outer boundary.
The introduction of the α and β effects clearly improves

the fit to the measurements. We illustrate this in Fig. 3,
which compares the prediction of our model, with and
without the α and β terms, to the measurements of the
time-varying signals for f ¼ −23 Hz (Rm ¼ 72), at a
given latitude (−20°). There, a sleeve intrudes the sodium
volume and records the azimuthal component of the
magnetic field at six different radii labeled P1 to P6
(as drawn in Fig. 1). When the inner sphere spins, small
deviations of its magnetic field from axisymmetry produce
a magnetic signal that oscillates at the rotation frequency f
and its overtones. Here, we focus on the 2f and 3f
overtones caused by the m ¼ 2 and m ¼ 3 heterogeneities
of the magnet. We measure the phase and amplitude of the
time-varying magnetic signals at all six radii and plot them
(with their error bars) in the complex plane, normalized by
B0 (the intensity of the imposed magnetic field at the
equator of the outer shell). When the inner sphere is at rest,
we record only the magnet’s potential field weakening with
increasing distance. Advection and diffusion completely
distort this pattern when the inner sphere spins. The blue
solid line displays the prediction from our full model of
these magnetic signals from the largest values at the inner
sphere boundary (r ¼ ri) to small values at the outer sphere
(r ¼ ro). Symbols mark the radial positions of the P6 to P1
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FIG. 2 (color online). Radial profiles of the α effect (a) and β
effect (b) with their error bars, obtained by the inversion of DTS
data for two magnetic Reynolds numbers: Rm ¼ 28 and 72. The
a priori null profile, along with its error bar, is also drawn. The
blue curve shows the αðrÞ and βðrÞ profiles retrieved from a
numerical simulation of the DTS experiment at Rm ¼ 29 and
Re ¼ 2.9 × 104, blown up by a factor 4 × 104.
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FIG. 3 (color online). Measurements and model fits for
an example of time-varying magnetic signals measured at 2f
(m ¼ 2) and 3f (m ¼ 3) frequencies, for a rotation rate of the inner
sphere f ¼ −23 Hz (Rm ¼ 72). See the text for explanations.
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magnetometers. The green dashed line is the trajectory
predicted by our model when we remove the α and β terms.
This altered model fails to produce the observations,
indicating that the β effect that we retrieve contributes
significantly to the measured signals.
In addition to the inversion of experimental measure-

ments, we perform direct numerical simulations (DNS) of
the experiment. Our code, based on spherical harmonic
expansion [15] and finite differences in radius, has already
been used to simulate the experiment. We restarted the most
turbulent computation of Figueroa et al. [12] with a new
imposed magnetic field containing the additional non-
axisymmetric and nondipolar terms. This simulation
reaches Re ¼ 2πfr2o=ν ¼ 2.9 × 104 (ν is the kinematic
viscosity), Rm ¼ 29, and a magnetostrophic regime close
to that of the experiment [8]. Turbulence is generated by
the destabilization of the outer boundary layer, yielding
plumes that penetrate inward to regions of stronger mag-
netic fields. There, the velocity fluctuations are damped,
but the associated magnetic fluctuations are stronger [12].
Six snapshots of the fields are saved every five turns. After
we have reached a statistically steady regime, we average
the fields over 162 turns of the inner sphere to obtain hBi
and hUi. It is then straightforward to compute the mean
emf E ¼ h ~u × ~bi, where fluctuating fields are obtained
from the difference between a snapshot and the time- and
longitude-averaged field.
Meridional maps of the mean emf Et are obtained and the

latitudinal component is displayed in Fig. 4(a). The α and β
profiles that best explain this mean emf (least-squares
solution of Eq. (2) excluding high latitudes) are shown
in Fig. 2. We estimate the error bar on the profiles as the
standard deviation of emfs computed from five subsamples
of 40 snapshots. One component of the emf Eαβ computed
with these α and β profiles is shown in Fig. 4(b), and can be

compared to the actual emf Et [Fig. 4(a)]. Although the α
and β profiles do not explain all of the mean emf, most
features are recovered. Other components exhibit a similar
behavior (not shown).
The parity (symmetry with respect to the equatorial

plane) of the emf and of hJi are clearly even [Fig. 4(c)],
while hBi is odd. This is in line with the fact that the DNS,
just like the experiments at the lowest Rm, predicts no α
effect [see Fig. 2(a)]. This might seem surprising given that
the mean flow displays helicity. However, if we split the
velocity fluctuations into even ( ~uþ) and odd ( ~u−) parity, we
see that their interaction with the mean odd magnetic field
generates odd ( ~b−) and even ( ~bþ) magnetic fluctuations,
respectively. The resulting emf E ¼ ~u × ~b is therefore
always even, if the odd and even velocity fluctuations
are uncorrelated. This is likely true in the low Rm regime.
The fact that the higher Rm-experiments require a nonzero
α effect [Fig. 2(a)] reveals that the velocity fluctuations are
interacting with an already-distorted larger-scale magnetic
field, or that correlations between the two parities become
nonzero.
The dipolar component of the induced magnetic field

predicted by our full model is small but nonzero at the
surface of the outer shell, even when the α effect is
negligible. Spence et al. [3] have shown that an axisym-
metric flow interacting with an axisymmetric magnetic
field cannot produce an external dipole. This remains true if
fluctuations only result in a homogeneous β effect. Even
with a radially varying β effect as we obtain here, an
external dipole can be produced only if a meridional flow is
present.
The most striking feature of the βðrÞ profiles we retrieve

is the strong negative values (down to −0.3η) that span a
large portion of the liquid sodium shell, especially at large
Rm (see Fig. 2). The DNS supports this result, showing that
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FIG. 4 (color online). Meridional cross section contour maps showing orthoradial component θ of emf E and of electrical current hJi.
(a) Averaged emf Et obtained from DNS. (b) Reconstructed emf Eαβ from inverted α and β profiles. High latitudes (white area) are
excluded from the least-squares fit. (c) Mean electrical current from DNS.
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it is not an artefact of considering only a radial dependence
for α and β. The much lower amplitude of β in the DNS is
due to a Reynolds number 300 times smaller than that in the
experiment, suggesting that β may scale with Re2.
Although negative β values, and hence reduced magnetic
diffusivity, are not unexpected [16–18], it is the first time
that they are observed in experiment. Our DTS experiment
combines a strong imposed magnetic field and strong
rotation. These could be the ingredients that lead to this
behavior. Were β to become even more negative, it might
promote dynamo action.
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