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Momentum diffusion is a widespread phenomenon in generic Hamiltonian systems. We show for the
prototypical standard map that this implies weak ergodicity breaking for the superdiffusive transport in
coordinate direction with an averaging-dependent quadratic and cubic increase of the mean-squared
displacement (MSD), respectively. This is explained via integrated Brownian motion, for which we derive
aging time dependent expressions for the ensemble-averaged MSD, the distribution of time-averaged
MSDs, and the ergodicity breaking parameter. Generalizations to other systems showing momentum
diffusion are pointed out.
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Anomalous diffusion has long been recognized as an
important transport mechanism occurring in physical,
chemical, biological, and sociological systems [1–3]. It
has been observed, e.g., for charge-carrier transport in
amorphous semiconductors [4], diffusion in porous materi-
als [5] and living cells [6], travel behavior of humans [7],
and for chaotic transport in the phase space of nonintegr-
able Hamiltonian systems [8–10], where the latter is
important for different fields such as transport of passively
advected tracers in two-dimensional, incompressible flows
[11] and the motion of charged particles in magnetized
plasmas [12]. A mechanism that can lead to anomalous
diffusion in Hamiltonian systems is the occurrence of
momentum diffusion. In this case, the corresponding
coordinate shows superdiffusive behavior with a mean-
squared displacement (MSD) which asymptotically
increases according to a power law, hΔx2ðτÞi ∼ hDαiτα,
where the diffusion exponent α is larger than one, and hDαi
is the generalized diffusion coefficient [13]. A fundamental
aspect of anomalous diffusion, which has moved both
physicists and biologists in recent years, is the question of
ergodicity, i.e., the equivalence of the ensemble- and
time-averaged MSD [15,16]. For subdiffusive (α < 1)
continuous time random walks [17] with a waiting time
distribution which has no finite mean, weak ergodicity
breaking and aging have been found [18–21], whereas
fractional Brownian motion [22] and diffusion on fractal
supports [23] are ergodic with respect to the squared
displacements [24,25]. Weak ergodicity breaking was
originally introduced in the context of spin-glasses [26]
and has been experimentally observed, for instance, for
blinking quantum dots [27] and for diffusion of lipid
granules in yeast cells [28]. In contrast to strong ergodicity
breaking, the underlying state or phase space of these
systems is not divided into mutually inaccessible regions.
Instead, the diverging characteristic time scale of the
process can be regarded as the origin of the nonergodic
behavior. Weak ergodicity breaking has also been found for

a special heterogeneous diffusion process [29], which can
be either sub- or superdiffusive, while for Lévy walks [30]
with constant velocity, nonergodic behavior only occurs in
the ballistic case (α ¼ 2) [31,32].
Despite this large variety of investigations, to our knowl-

edge, weak ergodicity breaking has not been reported for
Hamiltonian systems in the literature so far. This is the aim
of this Letter. We will show that the transition to global
stochasticity, i.e., the occurrence of momentum diffusion
on global scales, entails weak ergodicity breaking and
aging for the diffusive transport in coordinate direction,
where the latter is well described by integrated Brownian
motion. This stochastic model allows an exact analytical
derivation of the quantities of interest due to its simplicity
but, nevertheless, confirms the complex behavior which is
found for Hamiltonian systems. Momentum diffusion is a
typical phenomenon in Hamiltonian systems [33] and has
also been found in branched flows [34,35], which occur in
many branches of science [36,37], for scattering processes
in disordered systems [38,39], and for a system of two
coupled, kicked quantum rotors [40]. Furthermore, inte-
grated Brownian motion, or equivalently the dynamics of
randomly accelerated particles [41,42], plays a role, for
instance, for the statistical physics of polymer chains [43]
and, most importantly, is related to the Richardson-
Obukhov law of passive tracer transport in turbulent
flows [44,45]. The latter was also observed under certain
conditions for diffusion of cold atoms in optical lattices
[46] and the Brownian motion of an optically trapped
particle in air [47]. In all these systems, our results, reported
below, play a role and, in principle, can be observed
experimentally.
In the following, we investigate one of the simplest

examples for the occurrence of momentum diffusion, the
standard map [48]

ptþ1 ¼ pt þ
k
2π

sinð2πxtÞ; ð1Þ
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xtþ1 ¼ xt þ ptþ1; ð2Þ

which has become a paradigmatic example because it
shows all the phenomena typical for low-dimensional,
nonintegrable Hamiltonian chaos and, especially, a
transition to global stochasticity, where momentum diffu-
sion sets in. We emphasize, however, that our findings
are not restricted to low-dimensional systems. For the
standard map, there is a critical perturbation strength,
kc ¼ 0.9716…, for which the last invariant Kolmogorov-
Arnold-Moser (KAM) curve in phase space running from
x ¼ −∞ to x ¼ ∞ is destroyed [49]. Above this critical
perturbation, diffusion in momentum direction occurs
[50,51]. For our numerical simulations, we choose
k ¼ 1.5. Following MacKay [53], the corresponding dif-
fusion coefficient is given by hD1i ¼ 0.0012. This value
agrees very well with our numerical simulations (not shown
in the figures). If the motion in momentum direction is well
described by normal diffusion, the motion in coordinate
direction, Eq. (2), can be regarded as the Euler discretiza-
tion of integrated Brownian motion (IBM). In the follow-
ing, we study this stochastic process and compare our
analytical results with quantities numerically obtained from
the deterministic standard map.
Integrated Brownian motion [54–56] is defined by

ẍðtÞ ¼ ξðtÞ → xðtÞ ¼ xð0Þ þ
Z

t

0

Wðt0Þdt0; ð3Þ

where ξðtÞ is Gaussian white noise and WðtÞ is the Wiener
process with mean value hWðtÞiE ¼ W0 and covariance
function CWðt;sÞ¼hWðtÞWðsÞiE−hWðtÞiEhWðsÞiE¼
hD1iminðt;sÞ. We use the symbols h…iE and h…iT for
ensemble and time averages, respectively. For simplicity,
we set W0 ¼ 0. How a nonvanishing W0 influences the
following results in a trivial and, also, in a nontrivial way
will be discussed elsewhere [57]. The covariance function
of IBM is well known [56]

CIBMðt; sÞ ¼ hD1i
�
s2t
2

−
s3

6

�
; t > s: ð4Þ

From this, we can calculate the ensemble-averaged MSD,
and we obtain

hΔx2ðτÞiE ¼ h½xðta þ τÞ − xðtaÞ�2iE ¼ hD1i
�
taτ2 þ

τ3

3

�
;

ð5Þ
where ta is the so-called aging time, the elapsed time
between the beginning of the process and the beginning of
the measurement. Figure 1 shows a very good agreement
between our theoretical result and numerically determined
MSDs for the diffusion in coordinate direction in the
phase space of the standard map. Obviously, the diffusion

exponent depends on the aging time. For τ ≪ ta we observe
α ¼ 2, while asymptotically, for τ ≫ ta we have α ¼ 3.
This behavior should be contrasted with the behavior of

the time-averaged MSD defined as

hΔx2ðτÞiT ¼ 1

T − τ

Z
taþT−τ

ta

½xðtþ τÞ − xðtÞ�2dt: ð6Þ

By using Eq. (5), we can calculate the ensemble average of
the time average, Eq. (6), and we get

hhΔx2ðτÞiTiE ¼ hD1i
�
ð2ta þ TÞ τ

2

2
−
τ3

6

�
: ð7Þ

In Fig. 2, we can see four numerically determined time-
averaged MSDs for the diffusion in coordinate direction.
Despite the very long observation time of T ¼ 2 × 1010, the
time-averaged MSD remains random in the sense that
the generalized diffusion coefficient varies from one
trajectory to another. Therefore, ergodicity is broken.
The diffusion exponent α ¼ 2, which is predicted by
Eq. (7) for long observation times T ≫ τ, is the same
for every trajectory. In the rest of the Letter, we will
characterize the randomness of the time-averaged MSD
analytically and numerically.
For this purpose, we investigate the dimensionless

random variable ξ̂ðτÞ whose probability density is given by

pðξ; τÞ ¼
�
δ

�
ξ −

hΔx2ðτÞiT
hhΔx2ðτÞiTiE

��
E
→
T≫τ

pðξÞ: ð8Þ

Because of the rescaling and the behavior of the time-
averaged MSD shown in Fig. 2, this distribution does not
depend on the time lag τ for T ≫ τ. pðξÞ was recently

〈Δ
x2 (τ

)〉
E

τ

∝τ3

∝τ2

numerical data, ta=0
numerical data, ta=102
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FIG. 1 (color online). Ensemble-averaged MSD for different
aging times ta numerically obtained from N ¼ 5 × 105 trajecto-
ries generated by the standard map for k ¼ 1.5. The trajectories
were started close to the hyperbolic fixed point at ðx; pÞ ¼ ð0; 0Þ.
Also shown in the figure is the theoretical result of Eq. (5), which
was derived from integrated Brownian motion.
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studied for subdiffusive continuous time random walks
[20,21], Lévy walks [31,32], and a special heterogeneous
diffusion process [29]. The mean of ξ̂ðτÞ is equal to unity,
and for an ergodic process, we have pðξ; τÞ ¼ δðξ − 1Þ

for T → ∞. As a first step towards an analytical
derivation of the probability density pðξÞ for integrated
Brownian motion, we consider another dimensionless
random variable ξ�ðtÞ ¼ CvðtÞ=hCvðtÞiE, where CvðtÞ ¼
ðT − tÞ−1 R taþT−t

ta Wðt0 þ tÞWðt0Þdt0 is the autocorrela-
tion function defined as time average over the corre-
sponding velocity process, the Wiener process in our
case. The ensemble average of this function is given by
hCvðtÞiE ¼ hD1ið2ta þ T − tÞ=2. Again, due to the
rescaling, the random variable ξ�ðtÞ does not depend
on the time lag t for T ≫ t. In this case, we can replace ξ�ðtÞ
by ξ�ðt ¼ 0Þ. This is confirmed by our numerical simula-
tions, which are not shown here. By using the Green-Kubo
formula [58] hΔx2ðτÞiT¼2

R
τ
0 ðτ−tÞCvðtÞdt, we can prove

that the random variables ξ̂ðτÞ and ξ�ðt¼ 0Þ are equal in
distribution for T≫τ. Therefore, in the following, we treat
ξ�ðt ¼ 0Þ ¼ 2½hD1ið2ta þ TÞT�−1 R taþT

ta W2ðtÞdt. In order
to find an analytical expression for the Laplace transform
~pðsÞ ¼ hexpf−2s½hD1ið2ta þ TÞT�−1 R taþT

ta W2ðtÞdtgiE of
the probability density of the random variable ξ�ðt ¼ 0Þ,
we use the Feynman-Kac formalism [59]. For this
purpose, we write the Laplace transform in terms of a path
integral,

~pðsÞ ¼
Z

∞

−∞

Z
∞

−∞

�Z
WðtaþTÞ¼x

WðtaÞ¼x0

exp

�
−

1

2hD1i
Z

taþT

ta

_W2ðtÞdt − 2s
hD1ið2ta þ TÞT

Z
taþT

ta

W2ðtÞdt
�
D½WðtÞ�

�

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πhD1ita
p exp

�
−

x20
2hD1ita

�
dx0dx; ð9Þ

where we integrate over all Wiener trajectories which are at
position x0 at time ta and at position x at time ta þ T. In
Eq. (9), we multiply the path integral with the probability to
actually be at position x0 at time ta and then integrate over
x0 and x. The path integral can be solved by comparing it
with the known propagator of the quantum harmonic
oscillator. Then, performing the two integrations in
Eq. (9), we obtain

~pðsÞ¼
" ffiffiffiffiffiffiffiffiffiffiffiffi

4sλ2

1þ2λ

s
sinh

� ffiffiffiffiffiffiffiffiffiffiffiffi
4s

1þ2λ

r �
þcosh

� ffiffiffiffiffiffiffiffiffiffiffiffi
4s

1þ2λ

r �#−ð1=2Þ
:

ð10Þ

This is our main result, which only depends on the ratio
λ ¼ ta=T. In Fig. 3, we compare it with numerically
determined distributions pðξÞ for the diffusion in coordi-
nate direction in the phase space of the standard map. We
can see a very good agreement. For the numerical Laplace
inversion of Eq. (10), we used the method described in [60].
We would like to mention that the probability distribution

〈Δ
x2 (τ

)〉
T

τ

∝τ2
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numerical data, trajectory 2
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FIG. 2 (color online). Time-averaged MSD (ta ¼ 0) of four
different trajectories of lengthT ¼ 2 × 1010 numerically generated
by the standardmap for k ¼ 1.5. Again, all trajectories were started
close to the hyperbolic fixed point at ðx; pÞ ¼ ð0; 0Þ. The theo-
retical curve corresponds to Eq. (7) and describes the ensemble
average of time-averaged MSDs for integrated Brownian motion.

p(
ξ)

ξ

numerical data, ta=0
numerical data, ta=105

numerical data, ta=107

theory

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

p(
ξ )

ξ

10-3

10-2

10-1

 2  4  6  8  10

FIG. 3 (color online). Scatter distribution of rescaled time-
averaged MSDs (τ ¼ 100) for three different aging times ta
numerically determined from N ¼ 105 trajectories of length
T ¼ 105 generated by the standard map for k ¼ 1.5. The
numerical data agree very well with the theoretical curves, which
were obtained from a numerical Laplace inversion of Eq. (10).
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of the random variable ξ�ðt ¼ 0Þ can also be obtained by
the Cameron-Martin theorem, which is known in the
mathematical literature [61], or by using the formula on
page 124 in [62]. For ta ¼ 0, Eq. (10) simplifies to

~pðsÞ ¼ta¼0 ½coshð
ffiffiffiffiffi
4s

p
Þ�−ð1=2Þ: ð11Þ

This formula is known as the Cameron-Martin generating
function for the random variable

R
1
0 W2ðtÞdt. The corre-

sponding asymptotic behavior in the original space is
given by ð2πξ3Þ−ð1=2Þ exp½−1=ð4ξÞ� for ξ → 0 and
ð2 ffiffiffi

ξ
p Þ−1 exp½−ðπ2=16Þξ� for ξ → ∞.
Figure 3 shows the dependence of the distribution pðξÞ

on the aging time ta. For every finite ta, pðξ ¼ 0Þ ¼ 0, but
with increasing aging time, the maximum of the distribu-
tion pðξÞ becomes narrower and larger and gets closer to
ξ ¼ 0 in the sense that pðξÞ approaches for ta → ∞ the
limit distribution ð2πξÞ−ð1=2Þ expð− 1

2
ξÞ.

Finally, we consider the ergodicity breaking parameter
EB [20], which is defined as the variance of the random
variable ξ̂ðτÞ, and which is equal to zero for an ergodic
process in the limit T → ∞. It can be calculated for
integrated Brownian motion for T ≫ τ from Eq. (10)

EB ¼ hξ̂ðτÞ2iE − hξ̂ðτÞi2E ¼ 4

3

	
1þ 2

ð2þ 1=λÞ2


: ð12Þ

The ergodicity breaking parameter only depends on the
ratio λ ¼ ta=T and grows from 4=3 to 2 with increasing λ.
Figure 4 shows a comparison between the numerically
determined ergodicity breaking parameter for the diffusion
in coordinate direction in the phase space of the standard
map and the result from Eq. (12). Again, we can observe a
very good agreement.
We want to summarize and discuss our findings. We

have seen that the motion in coordinate direction in the
phase space of the standard map is well described by
integrated Brownian motion if the diffusion process in
momentum direction is normal. Integrated Brownian

motion exhibits aging and weak ergodicity breaking.
The ensemble-averaged MSD increases asymptotically as
τ3, but depends on the aging time ta insofar as it increases
only quadratically in the preasymptotic regime τ ≪ ta. In
contrast, the time-averaged MSD increases always as τ2,
and in addition, it is random in the sense that each trajectory
gives a different generalized diffusion coefficient. The
randomness of the time-averaged MSD is described by a
broad scatter distribution and a nonvanishing ergodicity
breaking parameter, which increases with growing aging
time. We know from other diffusion processes, such as
subdiffusive continuous time random walks or ballistic
Lévy walks, that the diverging characteristic time scale of
the process can be regarded as the origin of the weak
nonergodic behavior. One might now ask what the diverg-
ing characteristic time scale for integrated Brownian
motion is. For an answer to this question, one should keep
in mind that pure diffusion processes (without drift) are
characterized by many changes of direction, where the
direction of the motion changes if the velocity changes its
algebraic sign. For integrated Brownian motion, the cor-
responding velocity process is the Wiener process. It is well
known that the mean first passage time of a Wiener
trajectory to the origin starting from a certain positive or
negative value does not exist. Therefore, the averaged time
between changes of direction of integrated Brownian
motion diverges.
The phase spaces of other nonlinear maps which are

Poincaré sections of low-dimensional Hamiltonian systems
can be locally approximated by the phase space of the
standard map, where the perturbation parameter typically
decreases with increasing momentum (see, e.g., Chaps. 3
and 4 in [33]). Therefore, the momentum cannot increase to
arbitrarily high values but is limited by integrable structures
such as invariant KAM curves. However, as long as
diffusion in momentum direction is not limited by these
curves, the corresponding diffusion in coordinate direction
exhibits all the features of integrated Brownian motion.
Furthermore, our findings are also important for higher-
dimensional Hamiltonian systems, where Arnold diffusion,
i.e., normal diffusion in some action variables, occurs [33].
All the phenomena discussed in this Letter apply to the
corresponding angle variables, possibly with some mod-
ifications due to the resonance structures in phase space.
Obviously, the results obtained in this Letter are not
restricted to Hamiltonian systems, but are valid whenever
normal momentum diffusion occurs. Moreover, in a future
publication [57], we are going to show that integrated
Brownian motion can be reduced to a special Lévy walk
with a spatiotemporal coupling of the form ψðx; tÞ ∝
δðjxj − t3=2Þt−3=2 [63]. This stochastic process exhibits a
similar type of weak nonergodicity.

We want to thank Eli Barkai for helpful discussions.
Partial support from Deutsche Forschungsgemeinschaft
(Grant No. RA 416/8-1) is gratefully acknowledged.

E
B

λ

numerical data
theory

 1.2

 1.6

 2

10-5 10-4 10-3 10-2 10-1 100 101 102 103

FIG. 4 (color online). Numerically obtained ergodicity break-
ing parameter (τ ¼ 100) for different values of λ ¼ ta=T com-
pared with EB from Eq. (12). N ¼ 105 trajectories of length
T ¼ 105 generated by the standard map for k ¼ 1.5 were used for
the numerical determination.
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