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We report, in theory and experiment, on a new class of optical beams that are radially self-accelerating
and nondiffracting. These beams continuously evolve on spiraling trajectories while maintaining their
amplitude and phase distribution in their rotating rest frame. We provide a detailed insight into the
theoretical origin and characteristics of radial self-acceleration and prove our findings experimentally. As
radially self-accelerating beams are nonparaxial and a solution to the full scalar Helmholtz equation, they
can be implemented in many linear wave systems beyond optics, from acoustic and elastic waves to surface
waves in fluids and soft matter. Our work generalized the study of classical helicon beams to a complete set
of solutions for rotating complex fields.
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Self-accelerating wave packets freely accelerate without
any external potential present. This intriguing phenomenon
is of rapidly growing interest since its advent in optics
in 2007 [1–6]. The most prominent example of self-
accelerating waves has been introduced by Siviloglou
and co-workers [1,2]. They demonstrated, that an Airy-
type wave packet exhibits a linear transversal acceleration
and is therefore following a parabolic trajectory.
Enlarging the scope and the versatility of Airy beams,

nonparaxial generalizations in terms of full vectorial
solutions of Maxwell’s equations [7] and by the method
of caustics [8] were investigated. Their curved trajectories
render classical Airy beams a powerful tool in many areas
of application. For instance, in the field of particle
manipulation, microbeads have been guided in a new
fashion [9] beyond the scope of classical optical tweezers.
Moreover, it was shown that curved plasma channels have
many advantages over their straight counterparts [10].
Additionally, Airy wave packets inspired fundamental
research in the field of nonlinear optics [11–14] and
boosted the study of waves with intensity maxima that
propagate along almost arbitrary trajectories [15].
Broadening the range of influence beyond the scope of
optics, Airy beams have been utilized in electron beam
shaping [16] as well.
One common feature of the aforementioned waves—

even in two-dimensional settings—is that they accelerate
along a specific Cartesian coordinate axis [see Fig. 1(a)].
This obvious limitation brings about a number of funda-
mental questions. Is it possible to generate optical beams
that show a self-accelerating behavior along different
trajectories? Could those be shape invariant or even non-
diffractive? Based on the numerous already existing appli-
cations of Airy-type beams discussed in the previous
paragraph, it should be obvious that beams for which
the aforementioned questions can be answered affirma-
tively would enrich the optical toolbox in many areas of

application and research. Moreover, from a fundamental
point of view, it is essential to determine under which kind
of approximations analytical solutions for such beams can
be found. In other words, will those solutions be restricted
to the paraxial case or do they obey the scalar Helmholtz
equation or even Maxwell’s equations?
In the present Letter, we report on a new class of self-

accelerating diffraction-free waves that move along three-
dimensional spiraling trajectories. As such, they behave as
if they were influenced by a radially symmetric external
potential even though the propagation takes place in free
space. Observed from a rotating, comoving frame of
reference like the one depicted in Fig. 1(b), the beams
we present are propagation invariant. While rotating
diffraction-free beams are of great scientific interest for a
long time [17–25], with helicon beams being the most
prominent ones, so far no generalized theory has been
presented providing a complete set of solutions to the
Helmholtz equation that exhibit the described behavior.
Moreover, most investigations content themselves with
rotating intensity distributions and do not include complex
fields. Since our Letter covers those points, it has profound
implications on many linear wave systems in nature beyond
optics where time-harmonic waves obey the Helmholtz
equation, ranging from sound and elastic waves to surface

FIG. 1 (color online). Illustration showing the accelerative
behavior of (a) Airy and (b) radially self-accelerating beams.
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waves in fluids and soft matter. Within a thorough
theoretical discourse, we will derive an analytical expres-
sion for this new class of beams, for which—while out-
performing Airy-type and classical helicon beams—the
transverse cross section is highly tunable. In addition, we
are going to verify our theoretical findings on an exper-
imental basis utilizing an intuitive understanding borrowed
from Fourier optics. In this regard, we present a simple yet
powerful setup that enables one to address the entire
parameter range.
Our theoretical section is comprised of two parts. The

first one consists of an extensive theoretical derivation
regarding the most general expression of a beam which
exhibits a field pattern that is invariant in a rotating frame of
reference. As it will be discussed later, of more practical
interest might be the implementation of beams with a
rotating intensity distribution. For this reason, in the second
part, we pose conditions on the beam intensity only finding
a more general class of beams.
First, we model a complex field that is invariant in a

comoving, rotating frame. This wave is supposed to be a
solution to the scalar Helmholtz equation ΔEþ k2E ¼ 0,
where E is the electric field and k ¼ 2π=λ the correspond-
ing wave number. Since we are dealing with rotating
solutions, it is a natural choice to work in cylindrical
coordinates. Then, the most general solution of the scalar
Helmholtz equation can be written as

Eðr;φ; zÞ ¼
X∞
n¼−∞

Z
∞

0

dαCnðαÞJnðαrÞeiðnφþβzÞ; ð1Þ

which is essentially a superposition of fundamental
eigenmodes given in terms of diffraction-free Bessel waves.
The spatial structure of each eigenmode is determined by
JnðαrÞeiðnφþβzÞ, where JnðαrÞ represents the Bessel func-
tion of order n and β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α2

p
is the longitudinal

component of the wave vector or propagation constant.
For an arbitrary beam, the expansion coefficients CnðαÞ are
arbitrary as well. In the following, we will derive conditions
for CnðαÞ to obtain rotating solutions to the scalar
Helmholtz equation. Note, that we restrict our analysis
to beams that are propagating in the positive z direction.
For a beam that is self-accelerating, three major require-

ments need to be fulfilled. First, no external potential or
nonlinear optical effect should be present. Second, the
beam is diffraction free in a certain frame of reference.
Finally, an observer resting in the aforementioned frame
would experience a fictitious force. The first condition is
fulfilled immediately as we start our analysis from the
linear and time-independent scalar Helmholtz equation. For
the second one, a coordinate transformation needs to exist
for which the field distribution no longer depends on the
propagation direction. An electric field of the form,

Eðr;φ; zÞ¼! Eðr;φþ ωzÞ; ð2Þ

fulfills this condition. Obviously, with the substitution
φ0 ¼ φþ ωz, the field is no longer dependent on the
longitudinal position z and, thus, remains unchanged for
every z. Moreover, the aforementioned transformation
describes a reference frame that is rotating with angular
velocity ω. Consequently, the last requirement is satisfied,
as an observer resting in this frame experiences a centrifu-
gal force.
Since Eq. (2) has to hold for every φ and z, from Eq. (1),

it immediately follows that

β=n¼! ω: ð3Þ

As β was restricted to be positive, the first conclusion from
Eq. (3) is that the signs of n and ω have to be equal.
Moreover, since β is a function of α, Eq. (3) can be
rewritten

α¼! αn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ω2n2

p
: ð4Þ

Obviously, this restriction can only be fulfilled for the
specific choice of coefficients

CnðαÞ ¼ ~Cnδðα − αnÞ: ð5Þ

Applying the restrictions on sgnðnÞ as well as on CnðαÞ,
Eq. (1) becomes

Eðr;φ; zÞ ¼
Xnmax

n¼1

~CnJnðαnrÞei½sgnðωÞnðφþωzÞ�: ð6Þ

This is the most general expression of a beam that rotates in
a shape-invariant fashion with an angular velocity ω. Note
that nmax ¼ maxfn ∈ N∶k2 > ω2n2g in order to ensure that
evanescent waves are excluded from the sum. To give an
intuitive description of this finding, it is helpful to consider
its Fourier transformation. In essence, the Fourier transform
is a discrete superposition of concentric rings with radius
αn, whereas the amplitude of these rings is given by the
coefficients ~Cn. Note that for a given ω, Eq. (5) states that
for each order n there is exactly one ring of radius αn.
Moreover, each ring carries a helical phase pitch of 2πn.
The field pattern described by Eq. (6) gives rise to screw-

shaped trajectories, that exhibit a nondegenerate periodicity
in azimuthal and propagation direction. Figure 2 shows an
appropriate example using four Bessel waves with ~Cn ¼ 1
for 1 ≤ n ≤ 4 and ~Cn ¼ 0 for n > 4. The insets demon-
strate that amplitude and phase are rotating synchronously
as predicted. The angular frequency spectrum consists of
four concentric rings with radii determined by Eq. (4).
At the beginning of the theory section, we indicated that

for certain applications only the intensity distribution of a
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beam might be of interest. For this reason, we want to state
how the requirements for the beam profile change if
Iðr;φ; zÞ ¼ jEðr;φ; zÞj2 ¼ Iðr;φþ ωzÞ. It will be shown
that this scenario is more general and offers a larger degree
of freedom. Consequently, in our subsequent discussion
(including our experimental section), we will concentrate
on this case. As the derivation of the following results does
not convey much additional physical insight, it is contained
in the Supplemental Material [26]. One arrives at a
constrain similar to Eq. (4), which reads

αn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ðωnþ β0Þ2

q
: ð7Þ

Moreover, under these conditions, the field is given by

Eðr;φ; zÞ ¼ eiβ0z
X
n∈N

~CnJnðαnrÞei½nðφþωzÞ�: ð8Þ

Note that there are two main differences between Eq. (8)
and Eq. (6). First, Eq. (8) contains the global phase factor
eiβ0z with the propagation constant β0, which can be
regarded as a free parameter. Consequently, Eq. (8) does
not fulfill the requirement of a rotation invariant field
anymore as only the intensity is rotation invariant. It is
important to be aware of the fact that β0 does not only
determine the global phase factor but poses an important
degree of freedom for scaling the transverse beam proper-
ties. This becomes apparent when comparing Eq. (4) and
Eq. (7). The second difference is that the sum in Eq. (8)
contains also negative n, whereas Eq. (6) covers only
positive ones. To be specific, the set N ¼ fn ∈ Z∶k2 >
ðωnþ β0Þ2g contains all integer numbers n for which
Eq. (7) yields real values. Figure 3 shows an exemplary
beam with ~Cn ¼ 1 for −1 ≤ n ≤ þ1 and ~Cn ¼ 0 for
jnj > 1. The depicted insets demonstrate that the intensity
distribution is indeed rotating during propagation while the
corresponding phase is no longer synchronized.

An important, yet open, question is how versatile the
transverse cross section of beams described by Eq. (8) can
be tailored. To answer this question, consider Eq. (8) in the
initial plane. For a given distance R from the origin of
the coordinate system, Eq. (8) can be written

EðR;φ; 0Þ ¼
X
n∈N

Dneinφ; ð9Þ

where Dn ¼ ~CnJnðαnRÞ. If the distance R is chosen such
that JnðαnRÞ ≠ 0, Eq. (9) represents a Fourier series. As an
important consequence, the beam profile can be tailored
such that the field distribution on a circle with radius R can
be chosen arbitrarily, i.e., EðR;φ; z ¼ 0Þ ¼ fðφÞ, where
the complex function fðφÞ can be set without any restric-
tion. It follows that a cooking recipe to tailor these beams
could be to fix β0 as well as fðφÞ. Then Eq. (7) determines
αn and the expansion coefficients are given by

~Cn ¼
1

2πJnðαnRÞ
Z

2π

0

fðφÞe−inφdφ: ð10Þ

Note that as soon as the field is specified for one radius R,
the entire field in the transverse plane is determined. This is
due to the fixed radial dependence of the Bessel functions.
In order to experimentally implement our findings, we

exploit that the presented beams show a multi-ring pattern
with distinct helical phase pitch in the angular frequency
domain. Fourier transforming this pattern by means of a
conventional lens will match the previously discussed
theory. For the experimental setup, different approaches
are conceivable ranging from the use of axicons (conical
lenses), ring slit apertures, and phase plates to the exclusive
use of spatial-light modulators (SLMs). Here, we followed
the last approach as it provides the highest amount of
flexibility. Our setup is presented in Fig. 4 and uses a
technique introduced in Ref. [27]. This enables simulta-
neous amplitude and phase modulation with a single

FIG. 2 (color online). Exemplary illustration of a radially self-
accelerating field distribution with ~Cn ¼ 1 for 1 ≤ n ≤ 4 and
~Cn ¼ 0 for n > 4. The figure consists of one-dimensional
representation of the superimposed Bessel functions (main plot),
resulting intensity distribution (upper inset row), and resulting
phase pattern (lower inset row).

FIG. 3 (color online). Exemplary illustration of a radially self-
accelerating intensity distribution with ~Cn ¼ 1 for −1 ≤ n ≤ þ1
and ~Cn ¼ 0 for jnj > 1. The figure consists of one-dimensional
representation of the superimposed Bessel functions (main plot),
resulting intensity distribution (upper inset row), and resulting
phase pattern (lower inset row).
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phase-only SLM by multiplying the desired amplitude
distribution with a blazed grating. In our case, this desired
amplitude distribution is given by concentric rings—in
other words, we implement the Fourier transform of the
desired beam in the SLM plane. After the Fourier-
transforming lens, undesired grating orders are filtered
by a pinhole, and the primary signal is imaged by an
additional 4f setup. Finally, a movable CCD camera allows
us to measure the change of the intensity profile in
propagation direction.
With the proposed setup, we are able to cover almost the

entire parameter range provided by our theory. This, of
course, would go beyond the scope of this Letter. We will
therefore present an exemplary set of parameters upon which
we show the practicability of radially self-accelerating beams
and discuss the experimental limitations. One of these
limitations is already given by the fact that Bessel beams
cannot be created to their full extend as they would carry an
infinite amount of energy and require a nonfinite aperture.
This is also true for the presented radially self-accelerating
beams, since they are a specific discrete superposition of
Bessel beams. Another limitation arises from the fact that
the Fourier transform of a Bessel wave is a ring with
infinitesimal thickness. In an experimental setting, only
rings with finite width can be generated. Consequently, the
range over which the generated beam resembles the
theoretical prediction will be limited.
For experimental realization, the set of parameters

presented in Fig. 3 was used. Hence, a superposition of
three rings was implemented in the SLM plane. The
subsequent Fourier lens with focal length f connects the
ring radii Rn on the SLMwith the transverse components of
the wave vector αn via

αn ¼
kRn

f
: ð11Þ

Figure 5 shows an experimental scan along the propagation
direction together with a simulation based on the analytical

solution. In total, we were able to observe about two
rotations over a length of 101.5 mm. See Supplemental
Material [26] for an animated representation of the
full scan. The rotation rate was found to be ωexp ¼
ð123.2� 2.4Þ rad=m and is therefore in very good agree-
ment with the intended value of ωth ¼ 125 rad=m.
In conclusion, we demonstrated a new class of self-

accelerating waves. Theoretically, those waves, which
accelerate freely on spiraling trajectories, were derived
from the scalar Helmholtz equation. It was pointed out
that they can be generated as a discrete superposition of
Bessel waves with well-defined properties. As such, they
are quasi-nondiffractive, meaning that they are diffraction
free in a rotating, comoving frame of reference. With the
proposed experimental setup, the study of beam properties
was shown to be possible with great flexibility. In a
first proof of principle experiment, it was verified that the
beam shows indeed the desired rotating behavior—
yielding excellent agreement with the theoretical
predictions.
We foresee a broad range of applications for this new

class of self-accelerating beams ranging from particle
manipulation, e.g., as tractor beams and for sorting, mixing,
and cell extraction applications, to material processing, and
photolithography of three-dimensional chiral structures. To
widen the range of possible applications even further, it is
also of interest to study the properties of these beams on a
fundamental basis. For instance, the self-healing behavior
or the propagation dynamics in random media might be a
worthwhile field of research. Moreover, in the field of
material processing the dynamics in nonlinear environ-
ments or the behavior under strong focusing conditions
might be of interest.
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FIG. 4 (color online). Experimental setup containing a tele-
scope for beam expansion, SLM (Holoeye Pluto VIS) for
amplitude and phase modulation, lens for Fourier transfor-
mation (f ¼ 300 mm), aperture and 4f arrangement
(f1 ¼ f2 ¼ 200 mm) for signal cleaning, and a movable CCD
unit for data acquisition. FIG. 5 (color online). Propagation dynamics of a radially self-

accelerating beam identical to the one in Fig. 3. Radii on the SLM
were R1 ¼ 2.328, R2 ¼ 1.958, and R3 ¼ 1.501 mm.
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