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We present variational Monte Carlo calculations of the neutron matter equation of state using chiral
nuclear forces. The ground-state wave function of neutron matter, containing nonperturbative many-body
correlations, is obtained from auxiliary-field quantum Monte Carlo simulations of up to about 340 neutrons
interacting on a 103 discretized lattice. The evolution Hamiltonian is chosen to be attractive and spin
independent in order to avoid the fermion sign problem and is constructed to best reproduce broad features
of the chiral nuclear force. This is facilitated by choosing a lattice spacing of 1.5 fm, corresponding to a
momentum-space cutoff of A =414 MeV/c, a resolution scale at which strongly repulsive features of
nuclear two-body forces are suppressed. Differences between the evolution potential and the full chiral
nuclear interaction (Entem and Machleidt A = 414 MeV [L. Coraggio et al., Phys. Rev. C 87, 014322
(2013)]) are then treated perturbatively. Our results for the equation of state are compared to previous
quantum Monte Carlo simulations that employed chiral two-body forces at next-to-next-to-leading order
(N2LO). In addition, we include the effects of three-body forces at N2LO, which provide important
repulsion at densities higher than 0.02 fm~3 as well as two-body forces at next-to-next-to-next-to-leading
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Introduction.—Understanding the static and dynamic
properties of neutron matter will be key to addressing
fundamental questions at the interface of nuclear physics
and astrophysics. The structure and evolution of neutron
stars, the identification of viable sites for r-process nucleo-
synthesis, and the interpretation of observed gravitational
waveforms from compact binary mergers depend on neu-
tron matter response functions and the equation of state. The
nuclear densities relevant in these phenomena range from
dilute neutron matter (p = 0.0005 fm~—3), governed largely
by the universal properties of unitary Fermi systems, to
several times nuclear saturation density (py = 0.16 fm™)
found in the core of neutron stars. Because of the large
neutron-neutron scattering length, low-density neutron
matter is tractable through nonperturbative many-body
methods [1-5], while in the vicinity of nuclear matter
saturation density, the equation of state can be computed
to various degrees of accuracy and controlled approxima-
tions through a variety of many-body methods [6—16].

Recently, a number of quantum Monte Carlo (QMC)
studies [17—19] of neutron matter have employed micro-
scopic nuclear forces derived within the framework of chiral
effective field theory (for recent reviews see Refs. [20-22]).
These works have focused on chiral two-body interactions
at order (Q/ AX)3 (or next-to-next-to-leading order, N2LO),
where Q refers to the low-energy scale set by the pion mass
and nuclear momenta, while A, is the chiral symmetry
breaking scale set by, e.g., vector meson masses.
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In the present work, we introduce a novel approach to
study strongly correlated nuclear systems on the lattice
employing auxiliary-field quantum Monte Carlo (AFQMC)
simulations free of the fermion sign problem. The method
enables the simulation of a larger number of particles than
alternative Monte Carlo implementations, and it offers an
avenue to extend ab initio many-body methods into the
medium-mass region of the nuclear chart. As an initial
application of the method, we focus on the equation of state
of cold neutron matter at low to intermediate densities
computed from chiral two-body forces at N3LO together
with the chiral three-neutron force at N2LO.

The auxiliary-field quantum Monte Carlo simulations are
performed free of the fermion sign problem by constructing
an attractive, spin-independent effective Hamiltonian
inspired by one-boson exchange models. The extent to
which such a potential approximates the qualitative features
of realistic chiral nuclear forces depends, in part, on the
resolution scale at which the nuclear force is constructed.
Lowering the resolution scale weakens the short-distance
repulsion in the nucleon-nucleon (N N) interaction [23-25],
thereby enhancing the role of correlations in the neutron
matter ground state that can be generated by such evolution
Hamiltonians. In contradistinction with Green function
Monte Carlo simulations [1-3] employing Argonne nuclear
potentials where the short-range correlations have an
important role, in the present approach the emphasis is
on the long-range correlations.
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Specifically, we consider the chiral nuclear interaction
described in Refs. [11,26,27] with the regulating function

f(p.p') = exp[=(p/A)*" = (p'/A)*"]. (1)

where n =10 and A =414 MeV/c. The value of n is
chosen to be large for consistency with the sharp lattice
momentum cutoff. This high-precision nuclear potential
reproduces nucleon-nucleon elastic scattering phase shifts
up to lab energies of 200 MeV with y?/DOF = 1.44 [28],
the properties of the deuteron, the binding energy and
lifetime of *H (with the inclusion of two-body weak
currents), as well as the empirical nuclear matter saturation
point and critical point of the liquid-gas phase transition
[29]. In comparison, the optimized evolution potential,
expressed as a sum of attractive and repulsive Yukawa
interactions, is constrained by NN phase shifts as well as the
perturbative equation of state employing the full chiral
nuclear potential. The interacting ground state is then
obtained from this Hamiltonian by propagating a trial
Slater-determinant wave function in imaginary time using
standard auxiliary-field quantum Monte Carlo techniques
[30,31]. The expectation value of the full chiral Hamiltonian
in the evolved ground state on the one hand gives an upper
bound on the equation of state and on the other hand can be
interpreted as the first-order perturbative correction in
powers of the difference between the full chiral interaction
and the evolution potential. The present approach estab-
lishes the framework for future work directed toward
accessing nucleon spectral properties, linear response,
and various transport properties of dilute neutron matter,
similar to what has been demonstrated in the case of the
unitary Fermi gas [32-36]. Spin response and neutrino
scattering and emissivity [37,38] as well as collective modes
in dilute neutron matter [39] are examples of neutron star
and supernova properties that can be addressed.
Auxiliary-field quantum Monte Carlo simulations on the
lattice.—Quantum Monte Carlo approaches rely on the very
simple idea of projecting out the ground state y of a many-
body system with Hamiltonian A by means of imaginary

time evolution exp(—rl:l Ywo=3y, where i is an arbitrary
initial state with nonvanishing overlap with the ground state.
In practical realizations, the projection is performed by
successive application of the evolution operator for small
imaginary time steps: y(z + A7) = exp(—AzH )y (7). This
short evolution in imaginary time is converted into integral
form, and the emerging multidimensional integration is
performed by means of Monte Carlo techniques. For
fermionic systems, one has to introduce a prescription for
avoiding the sign problem. The most popular approaches
are the “fixed-node” and “fixed phase” approximations
[40,41], where the first one results in a variational approxi-
mation to the energy. In this Letter, we utilize a different
strategy to deal with the sign problem for a large class of
systems, which by construction also results in a variational
estimate of the energy.

Our aim is to compute the ground state energy of the
Hamiltonian A = T + V, where T is kinetic energy oper-
ator and V = V,y + Viy + - is the sum of two- and
many-body forces. In the followmg, we present calculations

including chiral 2N interactions up to order N3LO in

addition to the 3N interaction at order N2LO: V= VS}?LOH

Vgl;l,zm). We work with a low-momentum chiral potential

with cutoff parameter A = 414 MeV/c and a steep regu-
lator function [27]. Since the imaginary time evolution of a
wave function with the full chiral Hamiltonian results in a
severe sign problem, we rewrite the Hamiltonian as

H= (T+‘A/ev) + (‘A/_‘A/ev) Efiev+5f/’ (2)
where we assume that H,, represents a nonperturbative
problem that can be solved by means of QMC simulations
without the sign problem. By construction we assume that
oV can be regarded as a small correction to the energy that
can be estimated in perturbation theory. To leading order, we
find

E S (wlHly) = (wlHelw) + WlsVw).  (3)

and y (7 = co) ~ exp(—tH,, )y is the normalized ground-
state wave function of the evolution Hamiltonian. It is clear
that our approach provides an upper bound for the ground-
state energy E of the chiral Hamiltonian.

To construct the evolution Hamiltonian, we note that
each interaction that is spin independent and attractive in
momentum space [V, (g) < 0] leads to a QMC simulation
free from the sign problem (see for example, Ref. [30]).
Inspired by the one-boson exchange model, we express the
evolution potential as (including the pion)

Vela)= > —

A=T,0, w

i fla) @

and we apply a regulator function of the form
f(q) = exp[—(q/A)*°]. These coupling constants and
masses are fit (under the constraint that the sum is not
positive) to minimize the expression

X ZW EFT

where 8U)(E;) are phase shifts for partial waves j =
1Sy,3Py,3P;,>P, obtained both for the chiral N3LO and
the evolution potentials at given energy E;, and the weights
wl) are respectively 1,9 3 g Thus, the P waves are
weighted according their degeneracy. The range of phase
shifts included in the fitting procedure is density dependent
and contains lab energies from 0 to min[6E,(kr),
350] MeV where Ey(ky) = 2k%/M and kj is the Fermi
momentum. A somewhat similar approach to handle the
fermion sign problem was advocated in Ref. [42].

The role of the last term in Eq. (5) is to ensure that
the total energy of the neutron system interacting with

)= (E)] +a[ETEY — B2 (s)
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the evolution potential and computed from second-order
perturbation theory EL™ is the same as the energy
computed with the chiral potential Eg;f}t ) in the same
framework. The “stiffness” of this requirement is governed
by the parameter a, and in practice we choose it so that
differences in the perturbative estimates of the energy differ
by less that 1%. We note also that this kind of evolution
Hamiltonian is not necessarily unique, as described in the
Results section below.

Note that by construction the emerging evolution poten-
tial is density dependent, as in the case of the in-medium
similarity renormalization group approach [43]. Intuitively,
it can be treated as an effective, in-medium two-body
interaction, where the density dependence accounts for
repulsive effects of nuclear three-body forces, Pauli block-
ing in the medium, etc. In the zero-density limit the second
term of Eq. (5) is negligible, the potential is fitted to phase
shifts only, and it reproduces correctly low-energy scatter-
ing parameters, such as scattering length or effective range.

Once the evolution potential is constructed, we generate
the corresponding many-body wave function by means of
AFQMC simulations. We consider a set of N neutrons
interacting on a three-dimensional cubic spatial lattice of
extent L = N[ and impose periodic boundary conditions.
The lattice spacing [ = 1.5 fm provides a natural ultraviolet
cutoff scale, which we impose to be spherical in momentum
space and consistent with the cutoff scale of the chiral theory,
ie., A= p. = nh/l =414 MeV/c. The imaginary-time
evolution operator exp[—TI:IeV] is expanded using a Suzuki-
Trotter decomposition with temporal lattice spacing Az, and
the interaction V., is represented by means of a continuous
Hubbard-Stratonovich (HS) transformation. In order to get
faster convergence in the Monte Carlo evaluation, we
approximate the Gaussian quadrature emerging from the
HS decomposition by a 5-points quadrature formula, which
introduces an error that is small compared to that originating
from the Suzuki-Trotter formula. The statistical error for
Monte Carlo quadrature estimation is below 1%.

In this Letter, we work with lattice size N, = 10, which
in previous studies of the unitary Fermi gas [31,33] led to
systematic errors on the order of at most ~10%. The main
contribution to this error came from high momenta states
beyond the momentum cutoff due to the slow decay of the
universal high momentum tail in the occupation probability
n(p) ~ p~*. In the present work with chiral nuclear forces,
the momentum distribution exhibits an exponential falloff
(see Results section below), and therefore, we expect
improved finite-volume systematic errors. We have devel-
oped a new parallel code for these analyses and checked
that calculations performed at zero temperature reproduce
with sufficient accuracy the zero-temperature Bertsch
parameter of the unitary Fermi gas. In particular, the
superfluid gap of the unitary Fermi gas and the related
properties are accurately reproduced. We consider densities
from 0.01 to 0.10 fm~3, corresponding to particle numbers
ranging from 38 to 342, thus larger than any previous

calculations of neutron matter. In order to reduce the
discretization errors, we work only with particle numbers
corresponding to closed shells in the free Fermi gas model
on the lattice. Moreover, we have demonstrated the
feasibility of exploring the nonperturbative properties of
dilute neutron matter. We performed simulations with 38
particles in 123, 143, and 16 boxes while keeping the
lattice spacing fixed at 1.5 fm~, which correspond to
densities 0.0065, 0.0041, and 0.0028 fm3, respectively.

In addition to discretization errors and statistical errors
(below 1%), our approach introduces another source of
error, related to the fact that we approximate the ground-
state wave function of the chiral Hamiltonian by the ground
state of the evolution Hamiltonian. The best strategy to
quantify this error is to calculate the second-order correc-
tion in Eq. (3). In this Letter, we show only that the first-
order correction is small (at most 10%) and comparable to
discretization errors. Assuming the perturbativeness of the
expansion in Eq. (3) we conclude that discretization errors
are dominant in our approach; however, strict quantification
will be the subject of future studies.

Results.—In Fig. 1 we plot the evolution potentials as a
function of the momentum transfer ¢ for different densities
obtained by minimizing the y? function in Eq. (5). Different
initial choices for the coupling strengths and masses of the
“¢” and “@” mesons resulted in nearly identical evolution
potentials, except at the largest densities where variations in
the starting values gave a 2% spread in the final energy per
particle. We observe that the imposed energy constraint
leads to a decrease in the overall strength of the evolution
potentials as the density is increased. Physically, this
accounts for the presence of repulsive two- and three-body
forces that become more important as the density increases,
so on average the total strength of the attractive nuclear
potential must be reduced.
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FIG. 1 (color online). Momentum-space evolution potentials
[see Eq. (4)] employed in the imaginary-time propagation of the
trial wave function, corresponding to different densities. In the
inset is shown the expectation values of the evolution potential
(red solid circles) and the two-body chiral potential (blue squares)
computed for the density n = 0.011 fm™.
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FIG. 2 (color online). Occupation probabilities of neutron
matter as a function of momentum for selected densities.

As an initial trial wave function, we consider the
Slater determinant of the lowest N occupied discrete plane
wave orbitals. The expectation values of the evolution
Hamiltonian and the chiral nuclear potential at imaginary
time 7 = 0 are then simply the lattice Hartree-Fock ener-
gies. Deviations between the continuum Hartree-Fock
predictions and those of the lattice were found to be at
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FIG. 3 (color online). Equation of state of pure neutron matter
calculated using AFQMC with the N3LO chiral two-nucleon
potential (red circles) plus the N2LO three-nucleon contribution
(blue diamonds). For comparison, we show the results of Gezerlis
et al. [18], Roggero et al. [19], and Gezerlis and Carlson [44] of
QMC calculations with two-body forces alone. In the upper inset,
we show the contributions to the energy per particle from
different orders in the chiral expansion (“+4” and “-—” refer to
repulsive and attractive components, respectively). The lower
inset demonstrates that the last term in Eq. (3) is perturbative.

most a few percent when the particle number corresponds
to closed shells in the free Fermi gas model on the lattice. In
the inset of Fig. 1 we show the evolution in imaginary time
of (w(@)|Hely(z)) and (y(@)|EAB4ly()) for density
n=0.011 fm=3. Note that the left- and right-hand wave
functions are evolved separately. Typically, we observe a
very good convergence for imaginary times about
7~0.1 MeV~!, which requires about 300 imaginary time
steps. Apart from a nearly constant shift, the imaginary-
time dependence for both expectation values is very similar,
indicating that our fitting procedure, indeed, produces the
evolution potential, which correctly captures global fea-
tures of the chiral potential.

Our calculation procedure gives us access to the wave
function in both the coordinate and momentum represen-
tation. In Fig. 2 we show the momentum distribution
associated with the evolution Hamiltonian H,, for pure
neutron matter at selected densities. As the density
increases and the evolution Hamiltonian weakens, the
depletion in the occupation probability at low momenta
is reduced. In all simulations, the single-particle occupation
probabilities for the highest energy states is below 1%.

In Fig. 3 we present AFQMC results for the equation of
state of pure neutron matter (see the Supplemental Material
[45]). Evaluating only the chiral two-nucleon force in the
correlated ground state (shown in red solid circles), we find
that the equation of state is consistent with previous quantum
Monte Carlo simulations employing N2LO chiral 2N
interactions [18,19]. At very low densities, our results match
perfectly onto the QMC results obtained with the effective
interaction that captures correctly only scattering length and
effective range [44]. At these low densities, the pairing
correlations are very strong (A/ep ~ 1/4, where ¢ is the
Fermi energy of a free neutron gas with the same density)
and the nice agreement with Ref. [44] demonstrates that we
capture them very accurately. The chiral nuclear potential
most similar to the one employed in the current study is the
local 400 MeV cutoff potential of Ref. [18] (see the lower
line of gray open circles in Fig. 3). Our results for the energy
per particle are more repulsive by about 1 MeV, and although
further investigations are required, we note that the chiral
nuclear interaction in Ref. [18] is more strongly attractive in
relative P waves than the potential we employ. Computing
also the expectation value of the N2LO three-nucleon force
over the evolved wave function introduces significant addi-
tional repulsion above n = 0.02 fm—3, as seen from the solid
blue diamonds in Fig. 3. Differences between the expect-
ation value of the evolution Hamiltonian and the full chiral
nuclear 2N + 3N interaction (which can be regarded as the
first-order correction to the energy in perturbation theory)
are small as shown in the lower-right inset to Fig. 3. In the
upper-left inset, we show the expectation value of the chiral
Hamiltonian decomposed according to the chiral order.

In the above calculations we translate the lattice results to
the continuum limit with the following procedure: (i) From the
lattice simulations, we extract the dimensionless quantity
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(w|Oly)/ (wo|Olwy), where y is the ground state of the
evolution Hamiltonian, y is the free Fermi gas wave
function, and both expectation values are computed on the
lattice. (ii) To convert the lattice result into a dimensionful
quantity, we multiply by (yo|O|w,)©™, computed in the
continuum limit.
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