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We follow the time evolution of non-Abelian gauge bosons from far-from-equilibrium initial conditions
to thermal equilibrium by numerically solving an effective kinetic equation that becomes accurate in the
weak coupling limit. We consider isotropic initial conditions that are either highly overoccupied or
underoccupied. We find that overoccupied systems thermalize through a self-similar cascade reaching
equilibrium in multiples of a thermalization time teq ≈ 72:=ð1þ 0.12 log λ−1Þ × 1=λ2T, whereas under-
occupied systems undergo a “bottom-up” thermalization in a time teq ≈ ½34:þ 21: logðQ=TÞ�=
ð1þ 0.037 log λ−1Þ × ðQ=TÞ1=2=λ2T, where Q is the characteristic momentum scale of the initial
condition. We apply this result to model initial stages of heavy-ion collisions and find rapid thermalization
roughly in a time Qteq ≲ 10 or teq ≲ 1 fm=c.
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Non-Abelian far-from-equilibrium plasmas occur in
many cosmological pre- or reheating scenarios [1] or
due to possible cosmological phase transitions [2], as well
as in the early stages of heavy-ion collisions. These
far-from-equilibrium systems may be overoccupied, such
that the energy is spread out in longer wavelength modes
than in thermal equilibrium but with stronger fields. This
is the case, e.g., for fields generated through parametric
resonance, and in heavy-ion collisions, at least in the limit
of asymptotically large center of mass energies, where
the initial condition may be described by using the color-
glass-condensate framework [3]. Alternately, far-from-
equilibrium systems may be underoccupied, such that the
system consists of fewer, but more energetic, quasipar-
ticles than the corresponding thermal system. This is the
case in, e.g., Planck-suppressed decay of inflatons [4].
Also, even though the initial condition of heavy-ion
collisions is overoccupied, it has been demonstrated
by Baier, Mueller, Schiff, and Son [5] (see also [6]) that
the longitudinal expansion renders the prethermal
fireball underoccupied before it reaches local thermal
equilibrium.
This has motivated several numerical [7–12] and ana-

lytical [13,14] works to study simple far-from-equilibrium
model systems, in particular, that of a single species of
gauge bosons in a (nonexpanding) flat space-time with
statistically isotropic initial conditions at weak coupling,
which we investigate in this Letter with both over- and
underoccupied initial conditions. In both cases, we follow
the time evolution of the system from the initial far-from-
equilibrium state to thermal equilibrium and extract the
thermalization time, which we define as the exponent
governing relaxation of the deviation of the first moment
of the distribution function, hjpji ¼ R

p jpjfðpÞ=
R
p fðpÞ,

from its equilibrium value hjpjiT at late times:

hjpjðtÞi − hjpjiT ∝ e−t=teq : ð1Þ

In the overoccupied case, early dynamics fall onto a
nonthermal attractor solution: if the initial momentum scale
characterized by Q2 ≡ hp2ðt ¼ 0Þi is much smaller than
the momentum scale of the target thermal system, then the
scattering time of the initial system τinit ∼ ðQ=TÞ7=ðλ2TÞ
[13] is faster than that of the thermalized system
τtherm ∼ 1=ðλ2TÞ, with T the final equilibrium temperature
and λ≡ Ncg2 the ’t Hooft coupling. While it takes the
system at least τtherm to reach thermal equilibrium, it takes
only τinit ≪ τtherm to lose detailed information of its initial
condition. Therefore, at times τinit < t < τtherm the system
will reside in a state that is almost independent of the initial
condition but time varying; this is the nonthermal fixed
point. The fixed point is described by a scaling form of the
occupation function fðp; tÞ ¼ t−4=7 ~fðp=pmaxÞ, where the
scaling function ~f is proportional to 1=p at small momenta
and decays exponentially above an evolving scale pmax ∝
QðQtÞ1=7 [12,13]. There have been several numerical
studies demonstrating the approach to and details of the
fixed point using the classical Yang-Mills theory [7–11]
and the effective kinetic theory (EKT) of Arnold, Moore,
and Yaffe [12,15]. (For a discussion of the sensitivity of the
initial conditions and how the attractor is reached, see, in
particular, [10].) The simulations have so far been limited
to the classical limit (f ≫ 1 and λ ≪ 1), and therefore
the transition from the nonthermal fixed point to thermal
equilibrium (with f ∼ 1) has not been addressed and
current estimates of the thermalization time are purely
parametric. In this Letter, we demonstrate using numerical
simulations of EKT that the fixed point solution—and
any initial condition that falls to the basin of attraction
of the fixed point—reaches thermal equilibrium in a time
proportional to
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toverocceq ≈
72:

1þ 0.12 log λ−1
1

λ2T
: ð2Þ

In the underoccupied case, the scattering time of the
initial state is much longer than that of the target thermal
system, and therefore the system loses information about
the initial conditions only on final thermalization. The
equilibration of the underoccupied system proceeds via
bottom-up thermalization [5,13]: the initial hard particles
radiate soft radiation, which forms a thermal background
through which the hard particles propagate. Interaction
with the thermal background eventually causes the hard
particles to undergo a radiational breakup releasing their
energy to the thermal bath. (Within this definition, the
bottom-up thermalization is not specific to expanding
systems but refers to the order at which modes at different
momentum scales thermalize.) Parametrically, the breakup
takes place in the same time scale that it takes for a
jet of momentum Q to be quenched (i.e., to lose most
of its energy) in a thermal bath of temperature T:
τeq ∼ 1=λ2TðQ=TÞ1=2 [16,17]. The dominant interaction is

between the hard particles and the thermal bath, not among
the hard particles themselves [5,13], and therefore the
equilibration depends only on averaged features of the
initial condition. Indeed, we find that we can express
the thermalization time to good accuracy as a function
of the initial momentum scale Q only:

tunderocceq ≈
34.þ 21. logðQ=TÞ
1þ 0.037 log λ−1

�
Q
T

�
1=2 1

λ2T
: ð3Þ

Effective kinetic theory.—In the weak coupling limit
λ → 0, the evolution of modes with perturbative occupan-
cies λfðpÞ → 0 and whose momenta are larger than the
screening scale p2 ≫ m2 ≡ 2λ

R
p fðpÞ=jpj can be

described to leading order in λf by an effective kinetic
equation for the color-averaged gauge boson distribution
function [15]

∂tfðp; tÞ ¼ −C2↔2½f�ðpÞ − C1↔2½f�ðpÞ ð4Þ

with

C2↔2½f�ðpÞ ¼
1

2

Z
k;p0;k0

jMðmÞj2ð2πÞ4δð4Þðpþ k − p0 − k0Þ
2k2k02p2p0 ffpfk½1þ fp0 �½1þ fk0 � − fp0fk0 ½1þ fp�½1þ fk0 �g;

C1↔2½f�ðpÞ ¼
ð2πÞ3
2jpj2

Z
0

∞
dp0dk0γpp0;k0 ðm; T�Þffp½1þ fp0 �½1þ fk0 � − fp0fk0 ½1þ fp�gδðp − p0 − k0Þ

þ ð2πÞ3
jpj2

Z
0

∞
dp0dkγp

0
p;kðm; T�Þδðpþ k − p0Þffpfk½1þ fp0 � − fp0 ½1þ fp�½1þ fk�g: ð5Þ

(Our matrix element is related to that of Ref. [15] by
jMj2 ¼ P

bcdjMab
cd j2=ν, f ¼ fa, and γ ¼ γggg=ν, where ν

is the number of color and spin degrees of freedom.R
p ≡

R
d3p=ð2πÞ3.)

The effective matrix elements corresponding to elastic
scattering (jMj2) and collinear splitting (γ) have been
discussed in detail in Refs. [12,15,18]. The elastic collision
term includes effects of screening appearing in the leading
order by consistently regulating the Coulombic divergence
in t and u channels at the screening scale m. The splitting
kernel includes the effects of Landau-Pomeranchuk-Migdal
(LPM) suppression [16,19], which regulates collinear
divergences and depends onm and an effective temperature

T� ¼
1

2

Z
p
fðpÞ½1þ fðpÞ�

�Z
p

fðpÞ
jpj ð6Þ

that is self-consistently solved (along with m) during the
simulation. The effective theory contains no free parame-
ters besides the coupling constant λ. Our numerical
implementation is the discrete-p method of Ref. [12].
Overoccupied initial conditions.—We now determine the

thermalization time of a system whose initial conditions

are highly overoccupied. As discussed in the introduction,
previous studies have established that overoccupied sys-
tems relax to a fixed point solution in the classical regime
before thermalizing [7–14]. Hence, we take this solution
as our initial condition in the following. In Ref. [12], the
form of the fixed point solution at times τinit ≪ t ≪ τtherm
has been parametrized asfðpÞ ¼ ðQ0tÞ−4=7λ−1 ~fð ~pÞ with
~p ¼ ðp=Q0ÞðQ0tÞ−1=7, and

~fð ~pÞ ¼ 1

~p
ð0.22e−13.3 ~p þ 2.0e−0.92 ~p

2Þ; ð7Þ

and Q4
0 ¼ 2π2λ

R
p pfðpÞ. This scaling form is expected to

be valid as long as the typical momentum scale is small
compared to the thermal scale hjpji ≪ T, corresponding to
fðpmaxÞ ≫ 1 and t ≪ τtherm. If Q ≪ T, then τinit and τtherm
are parametrically separated, and therefore the system will
reside in the fixed point for a parametrically long time.
Therefore, we can take the fixed point solution as our
initial condition at some time t0 ≪ τtherm without loss of
generality.
Figure 1 displays the time evolution of the distribution

function. The dotted lines are from a simulation in the

PRL 113, 182301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 OCTOBER 2014

182301-2



classical approximation. [The classical approximation is
taken by including only the highest power of f’s in the
integrals of the right-hand side of Eq. (5).] In the classical
approximation, there is no scale where the cascade would
stop, and the cascade continues to move towards the UV
ad infinitum as described by Eq. (7). The solid lines
correspond to a simulation with the same initial condition,
but now without making the classical approximation.
In this case, the cascade ends to form the equilibrium
distribution when the typical occupancies reach f ∼ 1
when hjpji ∼ T.
The time evolution of the various relevant moments

of the distribution function are shown in Fig. 2. At times
t ≪ τtherm the moments are well described by power laws
predicted in Ref. [13] (dashed orange lines in the figure),
but when t ∼ τtherm they smoothly approach their thermal
values (red dashed lines). We repeated the simulation with
several λ ¼ 0.1–10. We find that the λ dependence is well
accounted for by a rescaling of time, λ2Ttð1þ C2 log λ−1Þ
with C2 ¼ 0.12. The logarithmic dependence in λ arises
from an IR divergence in momentum diffusion caused
by soft elastic collisions in the m → 0 limit. We show our
estimate for the thermalization time of Eq. (2) with a
vertical line, which we have extracted by using the
definition of Eq. (1). It is noteworthy, however, that the
various moments shown in the figure reach ∼50% of their
thermal values within a much faster time scale ∼0.01teq.
Bottom-up thermalization.—For the underoccupied sys-

tem the choice of initial conditions will affect the system
until it is thermalized, and therefore we do not experience
similar universal behavior as in the overoccupied case.
Here, we will proceed by first choosing a specific set of
initial conditions. For maximally different initial condi-
tions, we use either a step function or a Gaussian profile for
the distribution function

fstepðpÞ ∝ ΘðQs − pÞ; fgðpÞ ∝ exp

�
−
ðQs − pÞ2
ðQs=10Þ2

�
ð8Þ

and fix the constant of proportionality so that the final
temperature T is in each case the same. Our simulation
parameters are given in Table I.
The full time evolution of a representative initial con-

dition from t ¼ 0 to thermalization is shown in Fig. 3.
Two distinct stages are seen in the evolution: at early times
(solid lines), the initial hard particles at the scale Q emit
soft radiation leading to a buildup of a soft thermal bath. At
late times (black dashed lines), the hard particles undergo
radiational breakup and become part of the thermal bath
(red dashed line).
At early times, there are three clearly separated structures

visible in the spectrum. (a) The hard particles residing at the
initial scale Q have not had time to scatter and remain very
close to the initial condition. (b) The hard particles emit
LPM suppressed radiation with a characteristic f ∝ p−7=2

spectrum. (c) In the far IR where f ≳ 1, reinteractions are
fast enough to bring soft modes close to a thermal form.
The underoccupied system finally thermalizes through a

radiative breakup. Once the hard particles have had time
to undergo a single democratic splitting, i.e., splitting to
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FIG. 1 (color online). Evolution of fðpÞ towards the equilib-
rium distribution with overoccupied initial conditions and
λ ¼ 0.01. The system starts from the scaling form of Eq. (7)
at time t0 ≪ ttherm and relaxes towards the equilibrium distribu-
tion denoted by the black line. Even at late times, the ultraviolet
tail of the distribution deviates from the thermal form. The full
quantum evolution is compared to the classical approximation
well described by Eq. (7) (dotted lines).
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FIG. 2 (color online). Evolution of various moments (T�, m,
and hjpji) as a function of rescaled time with overoccupied initial
conditions. The different lines correspond to different values of
λ ¼ 0.1–10. The orange dashed lines correspond to the classical
limit, and the red dashed lines are the thermal values. The vertical
line is the thermalization time of Eq. (2).

TABLE I. Table of simulation parameters for the underoccu-
pied system. The initial particle number density is given in units
of the thermal density nT. The last column refers to the initial
condition as given by Eq. (8).

Run Q=T λ Init Run Q=T λ Init

1 202.5 0.1 g 4 155.1 0.1 Step
2 404.9 0.1 g 5 310.0 0.1 Step
3 809.8 0.1 g 6 620.0 0.1 Step
7 155.1 1.0 Step 9 310.0 1.0 Step
8 155.1 10.0 Step 10 310.0 10.0 Step
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daughters with comparable momenta, the resulting daugh-
ters will split again in a time scale that is faster than the
initial splitting [5,20]. The daughters undergo successive
resplittings until they have deposited their energy into
the thermal bath (dashed lines in Fig. 3). Parametrically,
the rate for the first hard splitting and therefore for the
cascade is

τsplit ∼ ðQ=TÞ1=2 × 1=λ2T ð9Þ

up to logarithmic corrections [13]. As in the case of the
overoccupied system, we observe that the dependence of
the various moments of distribution function on λ can be
accounted for by a multiplicative rescaling of the time
variable, including a logarithm λ2Ttð1þ C3 log λ−1Þ with
C3 ≈ 0.037. We furthermore find that most of the depend-
ence on the initial condition can be accounted for by
rescaling the time by ðT=QÞ1=2 as expected from the
parametric estimate for the thermalization time.
After the rescaling, m, T�, and hjpji show only weak

dependence on the initial conditions which is well
described by a logarithmic delay of the thermalization as
a function of Q=T: we find a satisfactory collapse of the
data at late times when plotted as a function of

trescaled ¼ λ2Ttð1þ C3 log λ−1ÞðT=QÞ1=2 − C4 logðQ=TÞ
ð10Þ

with C4 ≈ 21 as seen in Fig. 4. We extract the thermal-
ization time from exponential decay of hjpji − hjpjiT as a
function of the rescaled time variable giving teqjrescaled ≈ 34
(vertical line in Fig. 4). Converting this back to unscaled
time leads to the thermalization time of Eq. (3). We
observe, however, that high moments (such as hp2i) show

sensitivity to the initial conditions arising from increased
sensitivity to harder parts of the distribution function, and
the dependence on the initial conditions is not removed
by a simple rescaling of time. Unlike in the overoccupied
case, the system (in particular, the high moments) differs
significantly from the equilibrium system before the
thermalization time.
Summary and conclusions.—In this Letter, we have for

the first time simulated the time evolution of weakly
coupled non-Abelian plasmas from far-from-equilibrium
initial conditions to thermal equilibrium. We performed
the simulation in a framework of an effective kinetic theory
that has no free parameters and gives an accurate descrip-
tion of the gauge theory in the combined limit of λf ≪ 1
and λ ≪ 1 [15].
How soon the system can be considered thermal is

observable dependent. Here we have chosen to define
the thermalization time through the relaxation of mean
momentum, but defining the thermalization time through
the relaxation of m2 or T� results in values compatible with
our definition.
Our results from nonexpanding simulations can be

applied to elevate the parametric weak coupling estimate
of thermalization time in heavy-ion collisions of Baier,
Mueller, Schiff, and Son to a numerical one [5]. Their
estimate can be quickly derived by assuming that as a result
of longitudinal expansion the energy density of the system
falls as a function of (proper) time, ϵ ∼ ðQ3=λtÞ; so the
target temperature falls as T4 ∼Q3=λt. Inserting this into
the parametric estimate of the thermalization time of an
underoccupied system of Eq. (9) and solving for the
thermalization time by equating τeq ∼ t gives the estimate

of Ref. [5]: Qt ∼ α−13=5s . Replacing the parametric estimate
for the thermalization time by Eq. (3), assuming that the
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FIG. 3 (color online). The time evolution for an underoccupied
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energy density is given by ϵ ≈ 1.5dAQ4=πλðQtÞ (with
dA¼8) [21], choosing λ ¼ 11 corresponding to αs ≈ 0.3,
and solving the thermalization time self-consistently gives
Qteq ≈ 1.5. (We derive the energy density from the product
the gluon multiplicity [Eq. (14) of Ref. [21]] and mean
transverse momentum of the gluons which we read from
Fig. 6 of Ref. [21]: ϵ ¼ hpTi × ðdNinit:g=d2xTdyÞ=τ.)
Smaller values of αs lead to slower thermalization: for
αs ¼ 0.2 we get Qteq ≈ 4.0. Varying the estimate for the
energy density by a factor of 2 gives Qteq ≲ 2.5 (Qteq ≲ 8

for αs ¼ 0.2), whereas multiplying ϵ by ðQtÞ−1=3 to
estimate an upper bound for redshift effects gives Qteq≲4

(for α ¼ 0.3). For Q ∼ 2 GeV these values correspond to
an early thermalization time of teq ≈ 0.2–1 fm=c. Our
conclusion is that rapid thermalization is not in contradiction
with a weak coupling picture.
The estimate for the thermalization time can be further

improved by taking into account the angular dependence of
the distribution function. However, the dominant interac-
tion causing the radiative breakup of the hard particles is
against the thermal (and hence nearly isotropic [6]) back-
ground, and therefore we believe that introducing angular
dependence to the EKT will not change the result quali-
tatively. We also expect minor corrections from including
fermions in the EKT. We leave these improvements for a
forthcoming publication.
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