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Using a first-principles calculation within quantum chromodynamics, we are able to determine a pattern
of strangeness ¼ 1 resonances that appear as complex singularities within coupled πK-ηK scattering
amplitudes. We make use of numerical computation in the lattice discretized approach to the quantum field
theory with light quark masses corresponding tomπ ∼ 400 MeV and at a single lattice spacing. The energy
dependence of scattering amplitudes is extracted through their relationship to the discrete spectrum in a
finite volume, which we map out in unprecedented detail.
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Introduction.—Understanding how excited hadrons are
built up from the basic quark and gluon degrees of freedom
of quantum chromodynamics (QCD) remains a challenging
problem. QCD should be able to explain the apparent
regularity of the experimental spectrum, but its structure
suggests additional “exotic” quark-gluon configurations,
such as those in which the gluonic field is excited, which to
date have not been unambiguously observed in experiment.
An important feature of the theoretical challenge is that
excited hadrons appear in experiment as resonances, which
ultimately decay into pseudoscalar mesons, themselves
complex aggregations of confined quarks, antiquarks,
and gluons. To study resonances within QCD, one must
explore the behavior of the theory’s hadron scattering
amplitudes at low energy, a field of study that is still in
its infancy.
Lattice QCD offers us an ab initio numerical approach

to QCD calculations. By discretizing the quark and gluon
fields on a finite lattice and by sampling possible
space-time configurations of the gluon field through a
Monte Carlo method, we can compute correlation functions
with the quantum numbers of hadrons. These correlators
contain information about the spectrum and interactions of
hadrons.
Following Lüscher [1], a formalism has been derived that

relates infinite-volume hadron scattering amplitudes to the
discrete spectrum of hadron states in a finite volume.
Through the computation of statistically precise excited
state spectra in lattice QCD, we can extract the energy
dependence of hadron scattering amplitudes and examine
their resonant content. In a recent example considering the
elastic scattering of two pions [2], following computation
of the appropriate lattice QCD spectra, the scattering
amplitude was determined at 32 discrete energy values

in a 300 MeV range. This determination demonstrated
unambiguously the presence of the ρ resonance, whose
mass and width were extracted.
Unlike the ρ resonance, most known hadron resonances

do not decay into only one final state, but instead are
enhancements in coupled channels. The recently derived
formalism to extract coupled-channel scattering amplitudes
from finite-volume spectra is somewhat more involved than
the elastic case [3,4]. In this Letter, we will present the first
application of this formalism to QCD, for the particular
case of πK-ηK coupled-channel scattering.
Experimentally, a number of low-lying resonances

appear in isospin-1=2 πK scattering: the JP ¼ 1−,
K⋆ð892Þ, the strange analog of the ρ meson, is a narrow
elastic resonance, the JP ¼ 0þ, K⋆

0ð1430Þ appears as a
relatively broad resonance, and the JP ¼ 2þ, K⋆

2ð1430Þ, at
a similar mass value, is a much narrower resonance [5].
Furthermore, it is observed that in even-J partial-waves,
resonances decay dominantly to πK and not to ηK.
Resonances can be rigorously defined as pole singular-

ities in scattering amplitudes when they are considered to
be functions of complex values of the scattering energy.
Experimentally, the scattering amplitudes are determined
for real values of the energy above kinematic thresholds,
which may then be parametrized by analytic functions that
can be continued into the complex plane. One important
application of this procedure concerns the JP ¼ 0þ πK
scattering amplitude at low energy, where the use of
dispersion relations provides a particularly strong con-
straint when describing the available experimental scatter-
ing data, leading to a pole far from the real axis known as
the κ pole [6].
In this Letter, we will present scattering amplitudes

extracted from lattice QCD determinations of the excited
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hadron spectrum for the JP ¼ 0þ; 1−; 2þ coupled πK-ηK
channels. In this first calculation, we work with light quark
masses in the QCD Lagrangian somewhat heavier than
those known physically, meaning that initially our results
can only be compared qualitatively with the experimental
situation. We find, as in experiment, an approximate
decoupling of the πK-ηK channels and a rapid increase
of the πK JP ¼ 0þ scattering phase shift above threshold,
followed by a slower rise through 90° at higher energies.
With light quark masses somewhat heavier than the
physical case, the lightest vector resonance becomes bound
and the κ pole appears to manifest itself as a “virtual bound
state.” Behavior consistent with a narrow resonance is
observed in the JP ¼ 2þ channel.
Previous lattice QCD studies limited to elastic πK

scattering in isospin-1=2 appear in Refs. [7,8]. The authors
of Ref. [8], in calculations in a small volume with lower
light quark masses compared to this study and without
dynamical strange quarks, found a K⋆ above the πK
threshold and extracted resonance parameters.
Finite-volume spectrum from lattice QCD.—We make

use of the dynamical anisotropic lattices initially described
in Ref. [9], which feature two degenerate light quarks (u; d)
plus a heavier flavor with its mass tuned to approximate the
physical strange quark. In this study, the light quark mass
parameter is increased with respect to its physical value
such that the pion mass is 391 MeV, the kaon mass is
549 MeV, and the η mass is 589 MeV. Three spatial
volumes are utilized: 163ð∼2 fmÞ, 203ð∼2.5 fmÞ, and
243ð∼3 fmÞ, with a spatial lattice spacing as ∼ 0.12 fm.
The discrete spectrum of hadron states can be extracted

from two-point correlation functions h0jOiðtÞO†
jð0Þj0i. We

make use of two classes of interpolating fieldO†
i ; the first are

“single-meson” operators, those which resemble a qq̄ con-
struction ψ̄Γψ , where Γ is one of a large number of operators
in spin, color, and position space [10], while the second
resembles a pair of mesons with definite relative and total
momentum ðψ̄Γ1ψÞ~p1

ðψ̄Γ2ψÞ~p2
[11]. In an L × L × L

spatial volume with periodic boundary conditions, the
momenta that appear in these constructions are quantized
in integer multiples of 2π=L: ~p ¼ ð2π=LÞ × ðnx; ny; nzÞ.
More details of the constructions and a demonstration of
their efficacy can be found in Ref. [11].
For this study, we construct a basis of operators includ-

ing “meson-meson” constructions with quark flavors cor-
responding to πK and ηK. A matrix of correlation functions
is built [12] using a large number of single-meson operators
along with several relative momentum constructions of
both πK-like and ηK-like operators. A spectrum of states
that is best in a variational sense can be extracted from this
matrix by solving a generalized eigenvalue problem [13].
The lattice has a cubic symmetry, rather than that of the

full rotational group, so instead of being characterized by
integer spins, independent spectra lie in a finite number of
irreducible representations, or “irreps” Λ, of the reduced
symmetry. For a meson system with nonzero total momen-
tum ~P, the symmetry group is classified by irreps of
rotations that leave ~P invariant [10].We compute the excited

state spectrum in all relevant irreps for j~Pj2 ≤ 4ð2π=LÞ2
and find we can determine them with a high degree of
statistical precision in all cases. In Fig. 1 we show two
examples. Note that owing to the use of the variational
method of state extraction, there is a robust extraction of
near-degenerate states, even high in the spectrum.
If mesons had no residual strong interactions,

the discrete spectrum in a finite volume would be
predictable using the relativistic dispersion relation
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ j~p1j2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ j~p2j2
p

with the allowed quan-
tized momentum values given above. These volume-
dependent “noninteracting” energy levels are shown by
the continuous curves in Fig. 1, and the fact that the energy
levels extracted from our lattice QCD calculations do not lie
on these curves is an indication that there are interactions
between mesons. If these interactions are strong enough,
there may be resonant behavior. To explore this rigorously,
we must determine the meson-meson scattering amplitudes.
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FIG. 1 (color online). Discrete spectrum of c.m.-frame energies obtained from variational analysis of correlation matrices featuring
single-meson and meson-meson operators at three spatial volumes. Red bands are πK noninteracting level positions, and green bands are
ηK noninteracting level positions. (a) ~P ¼ ½000�, Λ ¼ Aþ

1 spectrum (dominated by JP ¼ 0þ with negligible contributions from J ≥ 4).
(b) ~P ¼ ½001�, Λ ¼ A1 spectrum (JP ¼ 0þ; 1−; 2þ all contribute).
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Scattering amplitudes.—For an interacting quantum field
theory, the relationship between the discrete spectrum of
states in an L × L × L volume, in a frame moving with
momentum ~P, for irrep Λ, can be written in a simplified
form as

det½δijδJJ0 þ iρi t
ðJÞ
ij ðEc:m:Þ(δJJ0 þ iM~PΛ

JJ0 ðpiLÞ)� ¼ 0;

where the scattering t matrix for partial-wave J appears
along with the phase space in channel i, ρiðsÞ ¼ 2pi=Ec:m:,
and the known volume-dependent functions M [3,4,14].
Given knowledge of the energy dependence of the scatter-

ing amplitudes tðJÞij ðEc:m:Þ, one can solve this equation for a
discrete spectrum of states fEc:m:g. The practical problem
at hand, however, is the reverse of this: to find the t matrix
given a lattice QCD calculation of the spectrum. For any
single energy level value Ec:m:, this is an underconstrained
problem, as there are multiple elements of the tmatrix to be
determined from only one condition.
The approach we will take is to parametrize the energy

dependence of the t matrix and describe the spectrum as a
whole. Such an approach was explored in the context of a
toy model of coupled-channel scattering in Ref. [3]. A
flexible K-matrix parametrization of partial-wave J, in
terms of the variable s ¼ E2

c:m:, can be constructed that
ensures the unitarity of the S matrix,

t−1ij ðsÞ ¼
1

ð2piÞJ
K−1

ij ðsÞ
1

ð2pjÞJ
þ IijðsÞ;

KijðsÞ ¼
X

p

gðpÞi gðpÞj

m2
p − s

þ
X

n

γðnÞij sn;

where we may choose how many poles and what
order polynomial to include in K, with real parameters

gðpÞi , mp, γ
ðnÞ
ij . The function IðsÞ must be chosen such that

ImIijðsÞ ¼ −δijρiðsÞ above threshold to ensure unitarity is
preserved. There is some freedom in the choice of the
real part; we choose an implementation of the Chew-
Mandelstam form [3], which has smooth behavior across
kinematic thresholds.
We use 80 levels from 20 irreps to constrain the 0þ

amplitudes from slightly below πK threshold up to
1650 MeV, 19 levels to constrain the 1− amplitude in
the region around the πK threshold, and a further 24 levels
to constrain the 2þ amplitudes between 1250 and
1700 MeV. The 0þ, 2þ partial waves are described by a
single K-matrix pole coupled to both πK and ηK plus a
constant matrix, while the πK threshold region in 1− is
described by a relativistic Breit-Wigner form. We assume
that the influence of partial waves J ≥ 3 is negligible in this
energy region.
The resulting t matrices are plotted in Fig. 2. For

0þ, 2þ, πK and ηK phase shifts and an inelasticity, defined
in tii ¼ ðηe2iδi − 1Þ=ð2iρiÞ, tij ¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
eiðδiþδjÞ�=

ð2 ffiffiffiffiffiffiffiffi
ρiρj

p Þ, for channels i ¼ πK, ηK, are shown, while
for 1− we plot the function p3 cot δ, which is real and
continuous across the πK threshold. In each case, we
present the χ2=Ndof for the parameterized description of the
input spectrum, which we find to be quite acceptable.
The points shown in the center of Fig. 2(a), which cover

the whole energy region plotted, indicate that we are
strongly constraining the energy dependence of the ampli-
tudes; in particular, note that the low-energy behavior of the
0þ πK amplitude is constrained by points at or below
threshold. Similarly, in Fig. 2(c), the energy dependence of
the 2þ amplitude is well sampled in the region of the rapid
rise of the phase shift. This region is above the ππK
threshold, which can, in principle, couple to the 2þ partial-
wave—we have assumed here that there is negligible
coupling to this channel.
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FIG. 2 (color online). (a) JP ¼ 0þ amplitudes. Open circles on axis show πK and ηK thresholds. Upper panel: πK and ηK phase shifts
in degrees. Lower panel: inelasticity. Points in center show the energy levels on three volumes used to constrain the t-matrix extraction;
larger solid points show ~P ¼ ~0, and smaller open circles show ~P ≠ ~0. (b) JP ¼ 1− around the πK threshold. Points determined directly
without parametrization of the vector amplitude from three volumes: 163 (boxes), 203 (circles), and 243 (triangles). Curve shows the
result of a relativistic Breit-Wigner parametrization p3 cot δ1 ¼ ðm2

R − sÞ½ð6π ffiffiffi
s

p Þ=g2R�. (c) JP ¼ 2þ amplitudes. Open circles on axis
show πK, ηK, and ππK thresholds.
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We observe that the πK phase shifts in 0þ, 2þ rise
through 90° suggesting possible resonant behavior, and
while this rise is rather slow in the scalar channel, it is rapid
in the tensor, indicating a likely narrow resonance. The
extracted inelasticities do not deviate significantly from
unity, corresponding to an approximate decoupling of the
ηK channel from πK. The ηK amplitudes are found to be
weak and repulsive.
The 1− amplitude around the πK threshold, shown in

Fig. 2(b), has the behavior expected of a bound state,
with the parametrization crossing zero below threshold.
The energy dependence of the amplitude can be well
described by a Breit-Wigner form, with a resulting mass
of mR ¼ 933ð1Þ MeV, constrained by the zero crossing,
and coupling of gR ¼ 5.93ð26Þ, constrained by the slope.
Resonance poles.—We may now analyze the singularity

structure of our parametrized t matrices by analytically
continuing them to complex values of s. A general feature
of relativistic scattering is that the square-root branch cut
present in the phase space leads to a multisheeted structure
for scattering amplitudes. The usual approach is to place the
branch cuts along the real axis beginning at kinematic
thresholds and running out to positive infinity. Physical
scattering occurs just above these cuts on the first Riemann
sheet, sheet I, where in our two-channel case, ImpπK > 0,
ImpηK > 0. Resonance poles lie on the “unphysical” sheets
reached by passing through the cuts, at pole positions
which may be expressed in terms of a “pole mass” and
“pole width,”

ffiffiffiffiffi
s0

p ¼ m − iΓ=2. Bound states may appear
as poles on the physical sheet on the real axis below
threshold, while poles on the real axis located on unphys-
ical sheets are interpreted as virtual bound states.
In Fig. 3 we present the pole singularities found for the

parametrizations given previously. As expected from the
relatively slow increase through 90° in the πK 0þ phase
shift, we find a K⋆

0 resonance pole with a large width. A
pole is present in this vicinity for a range of parametriza-
tions (not presented here) capable of describing the finite-
volume spectrum, and the uncertainty on the pole position
shown in Fig. 3 includes such variation. In the 2þ case, the
rapid rise in phase shift is due to a K⋆

2 resonance pole at a
slightly higher mass with a much smaller width. Both
resonances have a dominant coupling to πK extracted
from the residue of the pole. The 1− amplitude has a bound-
state pole just below πK threshold. The 0þ amplitude has
another pole that lies on the real axis some way below πK
threshold. The 1− pole is the only one lying on the physical
sheet; the others lie on both sheet II where ImpπK < 0,
ImpηK > 0 and sheet III where ImpπK < 0, ImpηK < 0.
The extracted poles are comparable to those found in

experiment; the broad scalar and narrow tensor resonances
resemble the K⋆

0ð1430Þ and K⋆
2ð1430Þ experimental states

respectively, although the scalar state appears to have a
somewhat larger width. The heavy (u; d) quark masses
result in a bound state with JP ¼ 1− within a few MeV of

πK threshold, where experiment finds a narrow
elastic scattering resonance. It is our expectation that the
K⋆ vector bound state will become a resonance as the light
quark mass is decreased, with the observed proximity to the
πK threshold being an accident of the particular quark
mass value used in this calculation. We note that the
Breit-Wigner coupling extracted above, gR ¼ 5.93ð26Þ,
is in quite reasonable agreement with the value
gphysR ¼ 5.52ð16Þ, corresponding to the experimental width
[5], in line with the theoretical suggestion that vector meson
couplings are largely quark-mass independent [15].
Our observation of a 0þ pole below threshold on

unphysical sheets agrees with the qualitative prediction
of unitarized chiral perturbation theory that as the pion
mass is increased above its physical value, the κ resonance
pole becomes a virtual bound state [15].
Summary.—Through lattice QCD computation of discrete

excited-state spectra in finite volumes we have been able to
determine coupled-channel scattering amplitudes via para-
metrizations of their energy dependence. The singularity
structure of these amplitudes was then explored. This calcu-
lation serves as a demonstration that using these techniques it
is possible to extract information about not only narrow
resonances and bound states but also broad resonances and
nonresonant features such as virtual bound states.
To compare this quantitatively with experiment, we

would need calculations at the physical light quark mass,
but the energy region of interest would then be above three-
hadron (and higher multiplicity) thresholds. The formalism
to relate finite-volume spectra to scattering amplitudes is
not currently mature enough to be applied in that situation,
although significant progress is being made [16].
While in this case relatively little coupling was observed

between the two scattering channels, there are hadron
scattering situations in which strong coupling is antici-
pated, such as (πη, K̄K) in which the a0ð980Þ resonance
appears, and the isoscalar channel (ππ, K̄K, ηη) whose
resonance structure and interpretation poses a number of
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FIG. 3 (color online). Pole singularities of partial-wave t
matrices in the complex plane for JP ¼ 0þ (red), 1− (orange),
and 2þ (green). Squares correspond to poles found on unphysical
sheets, and the circle is a physical sheet bound state. Uncertainties
include variation under changes in parametrization form.
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questions for QCD. Building on the successful application
of the finite-volume formalism for coupled channels
presented in this Letter, we will consider these more
strongly coupled systems, move to lighter quark masses,
and explore states in exotic partial waves.

CHROMA [17] and QUDA [18] were used to perform this
work at Jefferson Laboratory. For supplemental material
see Ref. [19].

We thank our colleagues within the Hadron Spectrum
Collaboration and M. R. Pennington and A. P. Szczepaniak
for useful discussions. We acknowledge the resources used
at Oak Ridge Leadership Computing Facility, the Texas
Advanced Computer Center, and the Pittsburgh
Supercomputer Center. Support is provided by U.S.
Department of Energy Contract No. DE-AC05-
06OR23177 under which Jefferson Science Associates
manages Jefferson Lab and Early Career Award Contract
No. DE-SC0006765.

*dudek@jlab.org
[1] M. Lüscher, Nucl. Phys. B354, 531 (1991).
[2] J. J. Dudek, R. G. Edwards, and C. E. Thomas, Phys. Rev. D

87, 034505 (2013).
[3] P. Guo, J. J. Dudek, R. G. Edwards, and A. P. Szczepaniak,

Phys. Rev. D 88, 014501 (2013).
[4] S. He, X. Feng, and C. Liu, J. High Energy Phys. 07 (2005)

011; M. T. Hansen and S. R. Sharpe, Phys. Rev. D 86,
016007 (2012); R. A. Briceno and Z. Davoudi, Phys. Rev. D
88, 094507 (2013).

[5] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86,
010001 (2012).

[6] S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C 48,
553 (2006).

[7] Z. Fu, Phys. Rev. D 85, 074501 (2012); Z. Fu and K. Fu,
Phys. Rev. D 86, 094507 (2012); K. Sasaki, N. Ishizuka, M.
Oka, and T. Yamazaki (PACS-CS Collaboration), Phys. Rev.
D 89, 054502 (2014).

[8] C. B. Lang, L. Leskovec, D. Mohler, and S. Prelovsek, Phys.
Rev. D 86, 054508 (2012); S. Prelovsek, L. Leskovec, C. B.
Lang, and D. Mohler, Phys. Rev. D 88, 054508 (2013).

[9] H.-W. Lin et al. (Hadron Spectrum Collaboration), Phys.
Rev. D 79, 034502 (2009).

[10] J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G. Richards,
and C. E. Thomas, Phys. Rev. Lett. 103, 262001 (2009);
Phys. Rev. D 82, 034508 (2010); C. E. Thomas, R. G.
Edwards, and J. J. Dudek, Phys. Rev. D 85, 014507 (2012).

[11] J. J. Dudek, R. G. Edwards, and C. E. Thomas, Phys. Rev. D
86, 034031 (2012).

[12] M. Peardon, J. Bulava, J. Foley, C. Morningstar, J. Dudek,
R. Edwards, B. Joó, H.-W. Lin, D. Richards, and K. Juge
(Hadron Spectrum Collaboration), Phys. Rev. D 80, 054506
(2009).

[13] C. Michael, Nucl. Phys. B259, 58 (1985); M. Luscher and
U. Wolff, Nucl. Phys. B339, 222 (1990).

[14] K. Rummukainen and S. A. Gottlieb, Nucl. Phys. B450, 397
(1995); L. Leskovec and S. Prelovsek, Phys. Rev. D 85,
114507 (2012).

[15] J. Nebreda and J. R. Pelaez, Phys. Rev. D 81, 054035
(2010).

[16] M. T. Hansen and S. R. Sharpe, arXiv:1311.4848.
[17] R. G. Edwards and B. Joo, Nucl. Phys. B, Proc. Suppl. 140,

832 (2005).
[18] R. Babich, M. A. Clark, and B. Joo, Proc. Comput. Sci. 4,

841 (2011).
[19] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.113.182001 for a brief
discussion of the coupled channel quantization condition,
some details of the Chew-Mandelstam phase space, and the
construction of operators to interpolate the η-meson.

PRL 113, 182001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 OCTOBER 2014

182001-5

http://dx.doi.org/10.1016/0550-3213(91)90366-6
http://dx.doi.org/10.1103/PhysRevD.87.034505
http://dx.doi.org/10.1103/PhysRevD.87.034505
http://dx.doi.org/10.1103/PhysRevD.88.014501
http://dx.doi.org/10.1088/1126-6708/2005/07/011
http://dx.doi.org/10.1088/1126-6708/2005/07/011
http://dx.doi.org/10.1103/PhysRevD.86.016007
http://dx.doi.org/10.1103/PhysRevD.86.016007
http://dx.doi.org/10.1103/PhysRevD.88.094507
http://dx.doi.org/10.1103/PhysRevD.88.094507
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1140/epjc/s10052-006-0036-2
http://dx.doi.org/10.1140/epjc/s10052-006-0036-2
http://dx.doi.org/10.1103/PhysRevD.85.074501
http://dx.doi.org/10.1103/PhysRevD.86.094507
http://dx.doi.org/10.1103/PhysRevD.89.054502
http://dx.doi.org/10.1103/PhysRevD.89.054502
http://dx.doi.org/10.1103/PhysRevD.86.054508
http://dx.doi.org/10.1103/PhysRevD.86.054508
http://dx.doi.org/10.1103/PhysRevD.88.054508
http://dx.doi.org/10.1103/PhysRevD.79.034502
http://dx.doi.org/10.1103/PhysRevD.79.034502
http://dx.doi.org/10.1103/PhysRevLett.103.262001
http://dx.doi.org/10.1103/PhysRevD.82.034508
http://dx.doi.org/10.1103/PhysRevD.85.014507
http://dx.doi.org/10.1103/PhysRevD.86.034031
http://dx.doi.org/10.1103/PhysRevD.86.034031
http://dx.doi.org/10.1103/PhysRevD.80.054506
http://dx.doi.org/10.1103/PhysRevD.80.054506
http://dx.doi.org/10.1016/0550-3213(85)90297-4
http://dx.doi.org/10.1016/0550-3213(90)90540-T
http://dx.doi.org/10.1016/0550-3213(95)00313-H
http://dx.doi.org/10.1016/0550-3213(95)00313-H
http://dx.doi.org/10.1103/PhysRevD.85.114507
http://dx.doi.org/10.1103/PhysRevD.85.114507
http://dx.doi.org/10.1103/PhysRevD.81.054035
http://dx.doi.org/10.1103/PhysRevD.81.054035
http://arXiv.org/abs/1311.4848
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254
http://dx.doi.org/10.1016/j.procs.2011.04.089
http://dx.doi.org/10.1016/j.procs.2011.04.089
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.182001
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.182001
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.182001
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.182001
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.182001
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.182001
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.182001

