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An extensively studied mechanism to create particle-antiparticle asymmetries is the out-of-equilibrium
and CP violating decay of a heavy particle. We, instead, examine how asymmetries can arise purely from
2 → 2 annihilations rather than from the usual 1 → 2 decays and inverse decays. We review the general
conditions on the reaction rates that arise from S-matrix unitarity and CPT invariance, and show how these
are implemented in the context of a simple toy model. We formulate the Boltzmann equations for this
model, and present an example solution.
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Introduction.—Cosmological observations have shown
ΩDM ≈ 5ΩB ≈ 0.24, where ΩDMðBÞ is the dark matter (DM)
(baryon) density divided by the critical density [1,2].
However, current physics cannot explain what makes up
ΩDM, why the baryon asymmetry of the Universe (BAU)
and, hence, ΩB is non-negligible [3], or indeed, why
ΩB ∼ ΩDM. A baryogenesis mechanism satisfying the
Sakharov conditions—violation of the baryon number,
violation of charge conjugation (C) and charge parity
(CP) symmetries, and a departure from thermal equilib-
rium—is required to explain the BAU [4]. A similar
asymmetry may also exist in the DM sector. In fact,
asymmetric DM (ADM) scenarios seek to explain ΩB ∼
ΩDM as resulting from nB ∼ jnX − nX̄j, where nB is the
baryon number density and nXðnX̄Þ is the DM particle
(antiparticle) density [5–8]. Understanding possible mech-
anisms for creating particle-antiparticle asymmetries is,
therefore, crucial if we are to understand the cosmological
history of the Universe at the earliest times.
In well known scenarios of baryogenesis, a matter-anti-

matter asymmetry is created by the out-of-equilibriumdecay
of a heavy particle [9–12]. Similar mechanisms have been
applied to ADM scenarios [13]. The decays must be CP
violating for a preference of matter to be created over
antimatter. Furthermore, the asymmetry can only be created
once the decaying particle has departed from thermal equi-
librium;becauseS-matrixunitarity ensuresnonet preference
for particle over antiparticle states, can occur in equilibrium.
Such scenarios have been studied extensively.
In contrast, there has been much less focus on asymme-

tries created from annihilations. Again, due to the unitarity,
one or more of the particles involved in the annihilation
must go out of thermal equilibrium for an asymmetry to be
generated [14–16]. This is the case in weakly interacting
massive particle- (WIMP-)like baryogenesis, for example,
in which heavy neutral particles freeze out and become the
DM density and, at the same time, create the BAU through

their annihilations [17–21]. The effect of 2↔2 annihila-
tions has also been investigated in the context of lepto-
genesis [22–26]. In this case, it was found that the
annihilations change the asymmetry at high temperature
but have only a negligible effect on the final asymmetry
[22]. However, there is no reason to expect this feature to
hold for baryogenesis in general.
Theeffect of annihilations is, therefore, interesting from—

at least—the perspective of baryogenesis. The WIMP-like
baryogenesis mechanism also explains the DM density, but
with no asymmetry between DM particles and antiparticles.
However, it may be possible to construct an ADMmodel in
which such annihilations play a role: this Letter is a first step
towards such a goal. (Such a model was constructed pre-
viously; however, we find the unitarity constraint was not
properly taken into account [27].) Asymmetry creation
during freeze-in has also been considered [28–30]. We are,
instead, concerned with freeze-out.
The purpose of this Letter is to provide a general

framework for models which seek to create particle-anti-
particle asymmetries from annihilations. While certain
aspects of such mechanisms are necessarily model depen-
dent, other considerations, such as the unitarity relations
and construction of the Boltzmann equations are generic.
Our focus, in this Letter, is on examining asymmetries from
annihilations alone; in accompanying work, we examine
scenarios in which decays and annihilations compete in
creating the final asymmetry [31].
The structure of the Letter is as follows. In the next

section, we review S-matrix unitarity and its implications
for the CP violating reaction rates of annihilations. We,
then, study a toy model involving the interaction between
four fermions. We outline the Boltzmann equations for the
model and show that a nonzero source term develops when
one or more of the species depart from equilibrium. We
calculate the relevant thermally averaged cross sections and
solve the Boltzmann equations numerically.
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S-Matrix unitarity and time reversal.—Unitarity of the S
matrix (S†S ¼ SS† ¼ 1) together with invariance under
charge parity time (CPT) implies, for the usual invariant
matrix elements,

X

β

jMðα→βÞj2¼
X

β

jMðβ→αÞj2

¼
X

β

jMðβ̄→ᾱÞj2¼
X

β

jMðᾱ→β̄Þj2; ð1Þ

where α is an arbitrary state, ᾱ itsCP conjugate and the sum
runs over all possible states β. Consider the collision term
in the Boltzmann equations for the transition of a set of
particles αi where i ¼ 1;…; n to and from a set of particles
βj where j ¼ 1;…; m. Let us denote the integrated colli-
sion term for transitions α → β in chemical equilibrium as
Wðα → βÞ. Approximated using Maxwell-Boltzmann sta-
tistics, the net collision term is related to the matrix
elements by [32]

Wðβ → αÞ −Wðα → βÞ ¼
Z

…

Z
dΠα1…dΠαndΠβ1…dΠβmδ

4

�X
pi −

X
pj

�
ð2πÞ4

× ffβ1…fβmjMðβ → αÞj2 − fα1…fαnjMðα → βÞj2g; ð2Þ

where fψ ¼ exp½ðμψ − EψÞ=T� is the phase space density
of species ψ with chemical potential μψ at energy Eψ,

dΠψ ¼ gψd3pψ

2Eψ ð2πÞ3
ð3Þ

is the normalized volume element of the three momenta, gψ
are the degrees of freedom, and we assume, throughout,
kinetic equilibrium so that the temperature (T) of each
species is identical. Under chemical equilibrium, we have,
in addition,

X

i

μαi ¼
X

j

μβj: ð4Þ

Chemical equilibrium and the delta function enforcing four
momentum conservation allows the replacement

fβ1…fβm → fα1…fαn; ð5Þ

under the integral sign in Eq. (2). Using the replacement in
Eq. (5) and taking the sum over all possible final states, one
finds [33]

X

β

Wðα → βÞ ¼
X

β

Wðβ → αÞ

¼
X

β

Wðβ̄ → ᾱÞ ¼
X

β

Wðᾱ → β̄Þ; ð6Þ

where the second line follows from CPT invariance.
Equation (6) means there must be a departure from thermal
equilibrium for a baryon asymmetry to be produced (the
third Sakharov condition). (An exception is the sponta-
neous baryogenesis scenario, in which CPT is violated
spontaneously by the expansion of the Universe, but the
particles themselves remain in thermal equilibrium
[34,35].) The same result holds for full quantum statistics.
The collision term and phase space densities are modified

to take into account quantum statistics [32], but the
unitarity condition is also modified [9,10,29]. We will
apply this unitarity constraint below so as to correctly relate
the CP violation in the reaction rates which enter the
Boltzmann equations [36,37].
Toy model.—Consider the interaction Lagrangian

L ¼ 1

4
κ1Ψc

1Ψ1fcf þ 1

4
κ2Ψc

2Ψ2fcf þ 1

2
κ3Ψc

2Ψ1fcf

þ 1

2
λ1Ψc

2Ψ1Ψ1Ψc
1 þ

1

4
λ2Ψc

2Ψ2Ψ1Ψc
1 þ

1

2
λ3Ψc

2Ψ2Ψ2Ψc
1

þ H:c:; ð7Þ

where the Ψ and f are Dirac fermions and the κi and λi are
effective couplings with mass dimension −2.
The above Lagrangian violates the particle numbers

associated with Ψ1, Ψ2, and f but preserves the linear
combination ΔðΨ1 þΨ2 − fÞ. We will show how these
interactions will generate an asymmetry in the f sector and
a related asymmetry in the Ψ sector, ΔðfÞ ¼ ΔðΨ1 þΨ2Þ,
through 2↔2 processes. The last three interaction terms
break the particle numbers associated with Ψ1 and Ψ2

individually but preserve ΔðΨ1 þΨ2Þ. These latter inter-
actions must be included to allow CP violation to arise in
the interference between tree and loop level diagrams.
Majorana masses are prohibited by the global symmetry of
the Lagrangian ΔðΨ1 þΨ2 − fÞ ¼ 0.
We assume f are in thermal equilibrium with the

radiation bath and that Ψ1 and Ψ2 are coupled to the
radiation bath only through their interactions in the above
Lagrangian. The asymmetries are generated during the time
when the Ψ particles are going out of equilibrium. We take
theΨ2 mass greater than theΨ1 mass (M2 > M1) and, also,
consider the decays of Ψ2 below.
The above Lagrangian includes four physical phases in

the couplings. CP violation arises in Ψ number changing
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interactions of the form ΨiΨj → f̄ f̄ in the interference
between the tree level and one loop level diagrams such as
those depicted in Fig. 1.
We define the equilibrium reaction rate density—which

will enter as a collision term in the Boltzmann equation—
for the annihilation Ψ1Ψ1 → f̄ f̄ as

ð1þ a1ÞA1 ≡WðΨ1Ψ1 → f̄ f̄Þ ð8Þ

¼ neqΨ1n
eq
Ψ1hvσðΨ1Ψ1 → f̄ f̄Þi; ð9Þ

where the thermally averaged cross section comes from
integrating over the phase space densities

neqα1n
eq
α2hvσðα1α2 → β1β2Þi≡

Z
…

Z
dΠα1dΠα2dΠβ1dΠβ2δ

4

�X
pi −

X
pj

�
ð2πÞ4feqα1feqα2jMðα1α2 → β1β2Þj2; ð10Þ

where neqαi (f
eq
αi ) is the number (phase space) density in the

absence of a chemical potential. We have parametrized the
CP violation in the following way:

a1 ≡ WðΨ1Ψ1 → f̄ f̄Þ −WðΨ̄1 Ψ̄1 → ffÞ
WðΨ1Ψ1 → f̄ f̄Þ þWðΨ̄1 Ψ̄1 → ffÞ ; ð11Þ

hence, the time reversed rate can be found by making the
substitution: a1 → −a1. The other CP violating inter-
actions are denoted

WðΨ2Ψ2 → f̄ f̄Þ≡ ð1þ a2ÞA2; ð12Þ

WðΨ1Ψ2 → f̄ f̄Þ≡ ð1þ a3ÞA3; ð13Þ

WðΨ1Ψ1 → Ψ1Ψ2Þ≡ ð1þ a4ÞA4; ð14Þ

WðΨ1Ψ1 → Ψ2Ψ2Þ≡ ð1þ a5ÞA5; ð15Þ

WðΨ2Ψ2 → Ψ2Ψ1Þ≡ ð1þ a6ÞA6: ð16Þ

CP conjugate rates can again be found by substituting
ai → −ai. The unitarity conditions yield

a1A1 þ a4A4 þ a5A5 ¼ 0; ð17Þ

a2A2 þ a6A6 − a5A5 ¼ 0; ð18Þ

a3A3 − a4A4 − a6A6 ¼ 0: ð19Þ

We have checked that the CP violating rates calculated in
terms of the underlying parameters of the Lagrangian do,
indeed, respect these unitarity conditions. Note, for
κi ¼ λi ≡ κ, the CP violation scales as ai ∼ κT2 for T ≫

M2 and ai ∼ κM2
2=ð8πÞ for T ≲M2 except for a1 which

becomes kinematically suppressed at low T (asM2 > M1).
Washout interactions of the form Ψif → Ψj f̄ must also

be taken into account. Furthermore, sufficiently rapid
interactions of the form ΨiΨj↔ΨkΨl relate the chemical
potentials of Ψ1 and Ψ2, these are also included in our
numerical solutions below. These rates are denoted as

WðΨ1f → Ψ1 f̄Þ ¼ W1; WðΨ2f → Ψ2 f̄Þ ¼ W2;

WðΨ1f → Ψ2 f̄Þ ¼ W3; WðΨ1Ψ1→ Ψ2Ψ1Þ ¼ Z1;

WðΨ1Ψ2 → Ψ2Ψ1Þ ¼ Z2; WðΨ2Ψ2 → Ψ1Ψ2Þ ¼ Z3:

A priori Ψ2 may have two decay channels

ΓðΨ2 → Ψ1 f̄ f̄Þ ¼ ð1þ γaÞΓ2a; ð20Þ

ΓðΨ2 → Ψ1Ψ1Ψ1Þ ¼ ð1þ γbÞΓ2b; ð21Þ

where the γi denote the CP odd component. Unitarity
implies γaΓ2a ¼ −γbΓ2b. Here, we kinematically forbid the
second decay channel, ensuring no CP violation is possible
in the Ψ2 decays. The remaining decay width is given by

Γ2a ¼
jκ3j2ðM2Þ5
3072π3

; ð22Þ

wherewehave ignored the final statemasses. (We include the
finalstatemassesandtheLorentzfactorsuppressionresulting
from the thermal average in our numerical solutions.)
Boltzmann equations.—We can now write down the

Boltzmann equations using the usual approximation of
Maxwell-Boltzmann statistics. The use of Maxwell-
Boltzmann statistics allows one to factor out the chemical
potential of a species from the collision term. The

FIG. 1. Tree and one-loop diagrams for the annihilation
Ψ1Ψ1 → f̄ f̄.
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nonequilibrium rate is then simply the equilibrium rate
multiplied by the ratio of the number density to the
equilibrium number density of the incoming particles.
For notational clarity, we define the ratio of the number
density to the equilibrium number density as

ri ≡ ni
neqi

; r̄i ≡ nī
neqi

: ð23Þ

We assume f and f̄ are in thermal equilibrium with the
radiation bath so μf ¼ −μf̄. We find the Boltzmann
equations for n1, n2, and the asymmetries nΔ1 ≡ n1 − n1̄
and nΔ2 ≡ n2 − n2̄ in terms of the CP even and odd
interaction rates. This results in a system of four coupled
first order ordinary differential equations. The equations
take the form

dn
dt

þ 3Hn ¼ ðsource termsÞ þ ðwashout termsÞ; ð24Þ

where H is the Hubble rate, the source terms can create an
asymmetry once one or more species depart from equilib-
rium and the washout terms drive towards equilibrium and
washout any asymmetries present. For example, the equa-
tion for nΔ1 has washout terms

neq2 Γ2a½r2−r2þr1rfrf−r1rfrf�
þ2W1½r1rf−r1rf�þW3½r2rf−r2rfþr1rf−r1rf�
þZ1½r2r1−r2r1�þ2Z2½r2r1−r1r2�þZ3½r2r1−r1r2�
þ2A1½rf rf−rfrfþr1r1−r1r1�
þA3½rf rf−rfrfþr2r1−r2r1�
þA4½r2r1−r2r1þr1r1−r1r1�
þ2A5½r2r2−r2r2þr1r1−r1r1�
þA6½r2r2−r2r2þr1r2−r1r2�: ð25Þ

The source terms for nΔ1 are

− 2a1A1½rfrf þ rfrf þ r1r1 þ r1r1�
− a3A3½rfrf þ rfrf þ r2r1 þ r2r1�
− a4A4½r1r1 þ r1r1 þ r2r1 þ r2r1�
− 2a5A5½r2r2 þ r2r2 þ r1r1 þ r1r1�
þ a6A6½r2r2 þ r2r2 þ r2r1 þ r2r1�: ð26Þ

By the application of the unitarity conditions (17)–(19),
these terms can only generate asymmetries, nΔ1 ≠ 0, when
the distribution of Ψ particles departs from equilib-
rium: ri ≠ 1.
We proceed to solve the Boltzmann equations numeri-

cally. The standard change of variable is made to express
the equations in terms of temperature rather than time. We
calculate the relevant cross sections and find the thermal
averaged cross sections numerically by making use of the
single integral formula [38]

hvσðij → finalÞi

¼ gigjT

8π4neqi n
eq
j

Z
Λ2

ðmjþmiÞ2
pijEiEjvrelσK1

� ffiffiffi
s

p
T

�
ds; ð27Þ

where s is the center-of-mass energy squared, pij is the
initial center-of-mass momentum, K1ðxÞ is the modified
Bessel function of the second kind of order one and Λ is the
effective theory cutoff. Having calculated the reaction rates
and CP violation, we then solve the system of coupled
Boltzmann equations using MATHEMATICA [39]. An exam-
ple solution is shown in Fig. 2.
The thermal history proceeds as follows. At high temper-

atures, the 2↔2 annihilations keep Ψ1 and Ψ2 close to
thermal equilibrium and only a small asymmetry can
develop (because of the expansion term, the particles are
never exactly in equilibrium). The departure from equilib-
rium and, hence, the asymmetries increase as T decreases
and the reactions become less effective. At some point, the
Ψi effectively decouple and the overall asymmetry remains
constant. In Fig. 2, this occurs around T ≈ 400 GeV.
Crucial to obtaining an asymmetry (with a common T
between sectors) is that at least some of the particles
involved are massive: the decoupling of massless particles
does not lead to ri ≠ 0. Numerically, we find the maximum
asymmetry is generated for decoupling at T ∼Mi.
Eventually, the heavier Ψ2 decay into Ψ1 and the final

ΔðΨÞ asymmetry is stored in Ψ1. Because of the different
masses, couplings, and phases, the asymmetries created in
Ψ2 and Ψ1 are different, and hence, the eventual ΔðΨÞ
decays of Ψ2 do not washout the overall asymmetry.
Note that a large symmetric component of Ψ1 is still

present: jYΔ1j ≪ Y1. In a realistic model, so as to not
overclose the Universe, the symmetric component should
be annihilated away. This can be achieved by introducing
an interaction of the form Ψ1Ψ1 → f̄f. Alternatively, Ψ1

andΨ1 could eventually decay. The asymmetry can then be

FIG. 2 (color online). Example solution to the systemof coupled
Boltzmann equations with densities normalized to the entropy
density Yψ ≡ nψ=s and shown evolving with temperature T, time
proceeds right to left. Parameters are set to Mf ¼ 100 GeV,
M1 ¼ 800 GeV, M2 ¼ 2 TeV, jκij ¼ jλij ¼ 5 × 10−13 GeV−2,
κ3 ¼ e−i3π=4jκ3j, λ1 ¼ eiπ=3jλ1j, λ2 ¼ e−iπ=6jλ2j, λ3 ¼ e−iπ=4jλ3j.
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stored in the decay products. These could be regular
baryons or, if they make up the DM and have a sufficiently
large annihilation cross section to annihilate away the
symmetric component, form asymmetric DM [40–42].
We have assumed kinetic equilibrium for theΨi through-

out. At high T, this is a good approximation as the 2↔2
interactions effectively transfer momentum between the Ψi
and f. As we approach the decoupling point, this approxi-
mation begins to breaks down [43–46]. This calculation can
be further refined through the inclusion of departures from
kinetic equilibrium, full quantum statistics, and thermal
masses which could give Oð1Þ corrections to the final
asymmetry.
Conclusion.—We have presented a generic setup for the

generation of particle-antiparticle asymmetries from 2↔2
processes, such as annihilations or scatterings. This is to be
contrasted with the better known scenario in which such
asymmetries are generated via 1 → 2 out-of-equilibrium
decays. We have explicitly outlined how the Boltzmann
equations should be formulated, taking S-matrix unitarity
and CPT invariance into account. We have also presented
an example numerical solution to the Boltzmann equations
in the context of a simple toy model. Such techniques can
be applied in calculation of particle-antiparticle asymme-
tries in models of baryogenesis and ADM, as will be the
focus of our future work.
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