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We demonstrate the instability of the free surface of a soft elastic solid facing downwards. Experiments
are carried out using a gel of constant density ρ, shear modulus μ, put in a rigid cylindrical dish of depth h.
When turned upside down, the free surface of the gel undergoes a normal outgoing acceleration g. It
remains perfectly flat for ρgh=μ < α� with α� ≃ 6, whereas a steady pattern spontaneously appears in the
opposite case. This phenomenon results from the interplay between the gravitational energy and the elastic
energy of deformation, which reduces the Rayleigh waves celerity and vanishes it at the threshold.
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Many materials such as biological tissues can withstand
huge elastic deformations of more than several hundred
percent. The amplitude of the stress is then of the order of
the elastic modulus, a situation commonly encountered
with soft materials. Specific and fascinating patterns,
reminiscent of those that can be seen in hydrodynamics,
can then occur spontaneously [1–10]. Since both soft
elastic solids and liquids are capable of undergoing large
deformations, and are often subjected to forces with a
common origin, e.g., capillary forces [6,11], it is likely that
some mechanical instabilities can be shared, to a certain
extent, by these two kinds of continuous media [3]. Out of
the many instabilities experienced by liquids, the Rayleigh-
Taylor instability (RTI) [12–14] is outstanding because it is
easy to understand, not too difficult to rationalize, and also
important in many technological and physical situations.
The dispersion relation for regular gravity waves on a deep
ocean reads ω ¼ ffiffiffiffiffi

gk
p

, where g is the downward gravity
acceleration, ω=ð2πÞ is the wave frequency, and k its
horizontal wave number. As often noticed, if one turns
the gravity upward, that is if one changes the sign of g, ω
becomes purely imaginary �i

ffiffiffiffiffiffiffiffi
−gk

p
, showing the existence

of fluctuations growing exponentially with time. These
fluctuations do not saturate and yield ultimately fingers of
liquids in free fall. If one considers, as we do below, a soft
solid in air with its surface turned downward, there are
a priori good reasons to believe that some sort of RTI will
set in. To figure it, consider a horizontal elastic slab of
thickness h subjected to the gravity of Earth g, the upper
surface being fixed to a rigid body, the lower one being free
(Fig. 1). A sinusoidal perturbation ζ ¼ ε sinðkxÞ of the
surface height (with x an in-plane coordinate) causes a

reduction in the gravitational energy per unit area equal to
1
2λ

R
λ
0 ρgζ

2dx ¼ 1
4
ρgε2, where ρ is the mass density of the

elastic medium and λ ¼ 2π=k is the wavelength. The
corresponding elastic energy cost per unit volume scales
as the shear modulus μ times the mean squared strain. In the
long wave limit (kh ≪ 1) the strain scales as ϵ=h: the
sample is vertically squeezed from length h to h − ε above
a trough of the wave [region (a) of Fig. 1], it is vertically
stretched above a peak from h to hþ ε [region (b)], and the
deformation varies progressively in between [region (c)].
Finally, the mean elastic energy per unit volume scales as
hμðε=hÞ2. Comparing the two contributions of the total
energy, it appears that the Rayleigh-Taylor buoyancy

2ε
2π/k

h

(a) (c) (b)

air

y

x

g

rigid substrate

elastic medium μ,ρ

FIG. 1. Scheme of a sinusoidal disturbance of a downward
facing and initially flat surface of a heavy elastic slab. The other
surface is fixed on the rigid substrate. The energy change due to
this disturbance can be positive or negative depending on the
value of the dimensionless ratio ρgh=μ with ρ the mass density, g
the (gravitational) acceleration, h the thickness, and μ the elastic
modulus.
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overcomes elasticity beyond an instability threshold
ρgh=μ ¼ α�, where α�, the dimensionless proportionality
constant for the elastic energy (with a factor of 4), is to be
found (see Supplemental Material [15], part B for the
complete calculation).
In the same situation a thin layer of liquid is always

unstable, which is equivalent to set to zero the shear
modulus in the previous estimate. Therefore, contrary to
liquids, RTI in a solid has a well-defined threshold for
layers of finite thickness. Beyond it, the deformation
increases up to a finite value for which the elastic cost
balances the buoyancy gain: a steady state of equilibrium is
then reached.
Although RTI in solids is expected to play a role in many

fields such as biology, geology [16,17], or astrophysics
[18], both a direct observation and a clear characterization
are missing. In [19,20] and [21], a flat metal plate whose
thickness is initially periodically modulated with a low
amplitude is accelerated by expanding detonation products.
The growth of the initial perturbation is observed through
the use of x-ray shadowgraphs. It was found to be governed
by the yield strength of the elastoplastic material, the initial
amplitude, and the plate thickness. More recently, yogurts
with a sinusoidal perturbation at the surface were put in a
mold and accelerated using a linear electric motor. The
stability regions of this elastic-plastic material have been
investigated in terms of acceleration, amplitude, and wave-
length of the initial perturbation [22]. In both cases (flat
metal plate and yogurt), the observations consist of
evolving states which are clearly associated to plastic
deformations of preexisting periodic ripples at the free
surface. Schematically, when the acceleration exerts a
strong enough stress on the ripples, the yield stress of
the material is overcome at the ripples extremities, which
begin to flow. In the experiments of [22], the case of an
initially flat surface has been briefly investigated. The
authors reported the existence of a nonstationary surface
instability and related its nucleation to the elastic (revers-
ible) deformations of the material. Their conclusion seems
erroneous insofar as it is based on a comparison with a
theoretical expression valid for samples whose height is
much higher than the wavelength, which is not the case in
their experiments. The results obtained in the present Letter
demonstrate unambiguously that if the phenomenon
observed by these authors were a consequence of RTI
for an elastic solid, their observations would have been
different. It is therefore likely that the observed phenome-
non is a consequence of the plastic properties of the
investigated material.
Following the pioneering analytic work of Drucker [23],

RTI in plastic solids has been modeled in the visco-elasto-
plastic approximation in order to simulate the growth in
amplitude of initial sinusoidal perturbations [24–26]. RTI
for purely elastic plates with an initially flat surface has
been analytically studied by Plohr and Sharp [27], whose

results were generalized a few years after [28,29]. They
predict for each value of the acceleration the existence of a
critical perturbation wavelength beyond which the flat
surface is unstable. As a consequence, an elastic plate is
always unstable, provided its dimensions are large enough
compared to the unstable wavelengths. This is in contrast
with the instability studied in this Letter. On the other hand,
Bakhrakh and Kovalev [30] have analytically studied the
case of an accelerated elastic half space and found that it is
unstable with respect to any perturbations with a wave-
length larger than 4πμ=ðρgÞ.
We report below the experimental observation of an

instability occurring on the surface of a heavy ideal elastic
solid pointing downwards. This instability occurs above a
threshold and results in steady patterns. At threshold,
elasticity exactly counterbalances buoyancy for an infini-
tesimal perturbation of the free surface. This phenomenon
is closely related to Rayleigh waves [31] since the phase
velocity of elastic surface waves decreases as the inward
gravity increases. This provides a physical interpretation of
the instability we have demonstrated, insofar as it occurs
when the gravity is strong enough to make the phase
velocity fully vanish. This viewpoint leads us straightfor-
wardly to calculate the growth rate of the instability.
In our experiments, we use aqueous polyacrylamide gels

consisting in a loose permanent polymer network immersed
in water. The density of this incompressible elastic material
is almost equal to that of water. It behaves as an elastic solid
for strains up to several hundreds of percent (Supplemental
Material [15], part A). The shear modulus can be tuned over
a wide range by varying the concentrations in monomers
and cross-linkers, or the temperature. In our experiments,
it lies between 30 and 150 Pa. It is measured through
indentation tests (Supplemental Material [15], part A).
The reagents generating the gel are dissolved in ultrapure

water and poured into the brim in a cylindrical dish whose
walls are covered with a thin layer of Velcro loops to
prevent any further detachment. After the gel is made and
its shear modulus measured, the dish is flipped upside
down. Various methods have been tested: (i) reversal when
the system is immersed in water (density close to that of the
gel), the container is then gently removed out of the water
keeping horizontal the free surface; (ii) reversal carried out
in air but with a rigid plate keeping flat the surface during
inversion. The plate is then gently removed; (iii) direct and
fast flipping of the system in air without any special care.
The three methods lead to identical results. The surface of
the thinnest or the hardest samples remains perfectly flat
[Fig. 2(a)]. In a narrow range of shear moduli and heights
nonpropagating undulations grow spontaneously at the free
surface of the gel and remain permanently [Figs. 2(b), 2(c),
2(d)]. For lower shear moduli or for greater thicknesses,
several cuvettes appear next to each other at the surface,
and remain permanently. For a constant thickness, their
number (from one to seven in our experiments) and their
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size depend on the shear modulus [Figs. 2(e), 2(f), 2(g)]. In
any case, flipping again the container (so that the free
surface is horizontal and upward) leads to the perfectly flat
surface we started from. In addition, successive reversals
lead to the same observations, except for a particular
sample for which the number of cuvettes is either four,
or seven [Figs. 2(f) and 2(g)]. We infer that the shear
modulus of this sample corresponds to a threshold for the
number of cuvettes so that the final configuration of the
system is driven by uncontrolled external disturbances.
This point is discussed at the end.
To obtain quantitative information about the surface

deformation, a regular light grid is projected about the
free surface [Fig. 3(a)]. The gel being transparent and the
bottom of the container being white, the observed image of
the grid results from one refraction followed by one
reflection and another refraction. If the free surface is flat,
this image corresponds to the grid without geometric
distortion [Fig. 2(a)]. It is warped if the free surface is
deformed, this distortion is bigger if the surface is more
deformed [Fig. 2(b)—2(g)]. To measure the distortion, a
rectangular lattice is fitted with the recorded images using
the least squares method. The fitting parameters are a
translation, the parameters and the orientation of the lattice,
and a possible quadratic distortion taking into account the
(small) radial decentering optical distortion [Fig. 3(b)].
Figure 3(c) shows this deviation plotted as a function of μ
for samples having the same thickness h ¼ 2.75 cm.
Fitting functions aþ bðμ − μ�Þc with these data gives
μ� ¼ 44.6� 1.8 Pa, demonstrating the existence of an
instability threshold at μ� [Fig. 3(c)]. This threshold
corresponds to a critical dimensionless acceleration
α� ¼ ðρgh=μ�Þ ¼ 6.05� 0.25.
We expect that the onset of instability will show up when

the frequency of a mode of propagation of elastic waves
[31–33] at finite wavelength becomes zero. We consider an
infinite layer of a heavy and incompressible elastic medium

of thickness hwith a free downward facing surface with air,
the other surface being fixed on a rigid substrate. We also
consider a plane wave propagating in the in-plane x̂
direction (see Fig. 3) with the (small) displacement
u ¼ uðyÞeiωt−kx (boldface being for vectors). Putting this
displacement field in the equations of motion for an
isotropic and incompressible heavy elastic medium
[34,35] with the boundary conditions described just above,
we obtain after linearization a condition for the dimension-
less frequency ~ω ¼ ωh

ffiffiffiffiffiffiffiffi
μ=ρ

p
and the dimensionless wave

number ~k ¼ kh (see Supplemental Material [15], part C):

det

0
BBB@

0 2~k2 0 ~s2 þ ~k2

− ~ω2 þ 2~k2 −α~k 2~k ~s −α~k
~k cosh ~k −~k sinh ~k ~s cosh ~s −~s sinh ~s
−~k sinh ~k ~k cosh ~k −~k sinh ~s ~k cosh ~s

1
CCCA ¼ 0;

ð1Þ

for ~s2 ¼ ~k2 − ~ω2 > 0. In Fig. 4, left, ~ω is plotted from
Eq. (1) as a function of ~k for various values of α ¼ ðρgμ=hÞ.
The curves exhibit a local minimum for α > 4.5, resulting
in two possible wavelengths for one frequency. The
frequency at the minimum becomes zero for
α ¼ α� ¼ 6.223 � � �: the propagation speed of the waves
is then zero and a sinusoidal perturbation of the surface
with the corresponding wave number is stationary. The
surface is then linearly unstable. The theoretical value of α�
is in good agreement with experimental observations
(Fig. 3). The finite size of our samples therefore has no
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FIG. 3. Quantitative analysis of the surface distortion. (a) Ex-
perimental setup. The distance mirror-projector sample is 1.5 m
while the dish diameter is 18 cm. (b) Full circles: intersections
of the distorted lines of the grid observed on a sample
(μ ¼ 41.5� 0.5 Pa). Solid lines defined the grid that best fits
the observed one. (c) Square root of the mean squared error with
the grid that best fits the observed one as a function of μ with
h ¼ 2.75 cm (full circles). The solid line is the best fit with the
power law aþ bðμ� − μÞc. We find μ� ¼ 44.6� 1.8 Pa.

FIG. 2. Views of the downward facing free surface of gels with
different shear moduli. (a) μ ¼ 78� 0.5 Pa, (b) 44� 0.5 Pa,
(c) 43.3� 0.5 Pa, (d) 42.8� 0.5 Pa, (e) 41.0� 0.5 Pa, (f),(g),
(h) 40.0� 0.5 Pa. The cylindrical dish is 18 cm diameter and
2.75 cm deep. (a)–(g) Steady patterns obtained just after reversal.
(h) The sample temperature was 50° when reversed. The snapshot
is taken after the sample has cooled to room temperature.
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significant effect on the threshold value, nor the gel-air
interfacial tension, which is consistent with the calculation
of supplement-B in the Supplemental Material [15].
Furthermore ~k ¼ 2.12 with h ¼ 2.75 cm corresponds to
8 cm for the wavelength, consistent with snapshots (b) and
(c) of Fig. 2. For α > α� we find ω2 < 0. Writing ω ¼ iΩ,
we obtain the growth rate Ω of the instability (Fig. 4, right).
We find Ω≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1.8μ=ρh2Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

α − α�
p

for α ≤ 1.3α�, corre-
sponding to a characteristic time (1=Ω) ranging from 0.2
[sample (b) of Fig. 2] to 0.1 s [sample (g)]. Unfortunately,
such a characteristic time cannot be experimentally mea-
sured since it is shorter than the duration required to place
the sample.
The preceding theoretical study applies for infinitesi-

mally small strains, i.e., near the threshold. Well beyond it,
the final patterns are obtained after a substantially longer
duration [a few seconds for patterns of Figs. 2(e), 2(f),
2(g)]. A surprising and striking nonlinear feature of the
instability is the difference in the observed patterns between
snapshots 2(f),2(g), and 2(h) of Fig. 2, all the three
corresponding to the same shear modulus with the same
container size. The first two are directly obtained from a gel
of 40� 0.5 Pa at room temperature. The third one is
obtained after cooling sample of Figs. 2(f) and 2(g) upside
down from 50 degrees down to room temperature. The
shear modulus correspondingly decreases from 44�
0.5 Pa to 40� 0.5 Pa. The cooling takes place gradually
from the boundaries towards the center of the sample,
resulting in shear modulus gradients until thermal equilib-
rium is reached. The dramatic difference between the

observed patterns highlights the existence of several equi-
librium configurations. This must be related to a compli-
cated energy landscape with several local minima far from
the instability threshold, providing a particularly interesting
challenge for non linear physics and morphogenesis.
Somehow the notion of instability as introducing a kind
of free choice in the evolution of a system shows up here. It
implies that the ultimate state reached after such an
instability depends not only on the growth of the unstable
structure itself but also on uncontrollable or at least hard to
control small effects, like various inhomogeneities in space
and time. This is clearly evidenced in our experiment.
We have shown that RTI exists in real elastic solids and

that it can be observed in everyday’s gravity field in soft
hydrogels. The instability threshold depends on the shear
modulus, the thickness and the density of the sample. Our
experimental set-up with soft elastic gels has enabled a
quantitative comparison with a linear theory. This has
allowed us to identify the basic ingredients of this insta-
bility and the way it appears. Measuring the dispersion
relation of surface waves can be a mean to detect the
proximity of the threshold, and therefore to predict an
impending change.
These results open the way for further fundamental

studies, for instance concerning the dynamic formation
and the large-scale organization of the patterns, which are
both of great importance for non linear physics and
morphogenesis. RTI in solids should also be found in
more complex situations, such as biology, geology and
industrial processing, with visco-plastic, visco-elastic or
non-isotropic materials. Moreover, the instability is
expected to occur in more extreme conditions (high
accelerations, strong and non-uniform gravitational fields)
where the direct observation is hardly possible. We believe
that our work lays foundation to address such more
complex cases.
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