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Recent dense granular flow experiments have shown that shear deformation in one region of a granular
medium fluidizes its entirety, including regions far from the sheared zone, effectively erasing the yield
condition everywhere. This enables slow creep deformation to occur when an external force is applied to a
probe in the nominally static regions of the material. The apparent change in rheology induced by far-away
motion is termed the “secondary rheology,” and a theoretical rationalization of this phenomenon is needed.
Recently, a new nonlocal granular rheology was successfully used to predict steady granular flow fields,
including grain-size-dependent shear-band widths in a wide variety of flow configurations. We show that
the nonlocal fluidity model is also capable of capturing secondary rheology. Specifically, we explore creep
of a circular intruder in a two-dimensional annular Couette cell and show that the model captures all salient
features observed in experiments, including both the rate-independent nature of creep for sufficiently slow
driving rates and the faster-than-linear increase in the creep speed with the force applied to the intruder.
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Granular materials display a unique set of flow proper-
ties, which differentiate them from conventional solids or
fluids. When a granular medium is subjected to boundary-
driven deformation, it usually forms shear bands, the sizes
of which depend upon both the geometry and the grain size
[1–7]. Until recently, conventional wisdom was that outside
of these shear bands the nominally quiescent material
behaved as a solid. However, recent experiments of van
Hecke and co-workers [8] established that this is not the
case. When an intruder is placed far away from the shear
band—or primary flow zone—it will move when any
nonzero force is applied to it. In contrast, when there is
no primary flow, a distinct yield condition is observed; i.e.,
a critical applied intruder force must be exceeded to move
it. This vanishing of the yield stress in the presence of far-
away primary flow is quite remarkable and motivates the
notion of a “secondary rheology” to describe the rheologi-
cal changes occurring at different locations in a granular
medium due to the existence of a primary flow. These
observations have been corroborated in subsequent works
[9,10], establishing secondary rheology as a key open
question in granular physics. For specificity, let us consider
the following example from the work of Reddy, Forterre,
and Pouliquen [9] which summarizes the essential phe-
nomenology. In their work, a cylindrical rod was placed
vertically in an annular Couette cell filled with grains.
When the inner wall was fixed, they observed that the force
applied to the rod had to exceed a critical value Fc in order
to move it through the granular medium. However, when
the inner wall was rotated and a primary flow consisting of
an inner-wall-located shear band was formed, the yield
condition vanished everywhere, enabling the rod to creep
for any applied force. Importantly, several experimental

observations were made about the creep phenomenology.
(i) For sufficiently low inner wall speeds, secondary
rheology is a rate-independent process; i.e., the rod creep
speed is linearly proportional to the inner wall speed.
(ii) The rod creep speed increases exponentially with the
force applied to the intruder. (iii) The rod creeps faster
when it is placed closer to the inner wall shear band.
As noted by Reddy, Forterre, and Pouliquen [9], these

observations provide a nontrivial test for continuummodels
of granular flow. In fact, local approaches to continuum
modeling of granular materials, such as inertial granular
rheology [11–13] or soil mechanics [14,15], which relate
the stress at a point to the local strain, strain rate, or locally
evolved state variables, are not equipped to address
secondary rheology phenomenology. Recently, we pro-
posed a nonlocal rheology for dense granular flows,
capable of quantitatively modeling primary flow fields
[16–18], based on emerging concepts from the emulsions
community [19,20]. The model was demonstrated to
accurately describe flow fields and shear-band widths in
numerous granular flow experiments in several different
flow configurations [17]. Even so, it was not clear if the
same model could address the distinct issue of secondary
rheology, where the goal is to describe the variation of
rheological properties induced by primary motion rather
than the primary motion itself. In this Letter, we provide a
decisive answer to this question, and to the outstanding
issue of secondary rheology in general, by showing that
such phenomena are all obtainable from the nonlo-
cal model.
We begin by summarizing the nonlocal granular rheol-

ogy. We denote the symmetric strain-rate tensor as _γij ¼
ð1=2Þð∂vi=∂xj þ ∂vj=∂xiÞ with vi the velocity vector and
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xi the spatial coordinate. We then assume that steady flow
proceeds at constant volume so that _γkk ¼ 0 [12,13,21,22]
and define the equivalent shear strain rate as _γ ¼
ð2_γij _γijÞ1=2. Next, we introduce the symmetric Cauchy
stress σij and define the pressure P ¼ −ð1=3Þσkk, the stress
deviator σij

0 ¼ σij þ Pδij, the equivalent shear stress
τ ¼ ðσij0σij0=2Þ1=2, and the stress ratio μ ¼ τ=P. Central
to the model is a scalar state variable g, called the granular
fluidity, which represents the susceptibility of a granular
cluster to flow. Mathematically, it functions as a field
variable that relates the load intensity μ to the consequent
flow rate _γ, i.e., _γ ¼ gμ, so that the tensorial relation
between the Cauchy stress and the strain rate is

σij ¼ −Pδij þ 2ðP=gÞ_γij; ð1Þ

where we have made the common assumption that the
strain-rate and deviatoric Cauchy stress tensors are codirec-
tional [12,13,21], though this is an approximation [23,24].
In a local description of granular flow, the fluidity is
constitutively given as a function of the stress, in a manner
consistent with Bagnold scaling [25]. Simple dimensional
analysis applied to the case of homogeneous simple
shearing produces a one-to-one relationship between the
stress ratio μ and a dimensionless version of the strain rate
called the inertial number I ¼ _γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2ρs=P
p

, where d is the
mean grain diameter and ρs is the grain material density.
Data have verified a Bingham-like functional form for μ ¼
μðIÞ [11], which when adopted leads to the following local
description of the fluidity:

gloc ¼ _γloc=μ ¼ Hðμ − μsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P=ρsd2
q

½ðμ − μsÞ=μb�; ð2Þ

where μs is a static yield value, b is a dimensionless
constant characterizing the rate-dependent response of the
granular media, and H is the Heaviside step function.
While the local relation successfully describes homo-

geneous simple shear, in inhomogeneous flows, significant
deviation from this local description is observed [16,22],
which motivates a nonlocal differential relation for the
granular fluidity. We have proposed the following specific
functional form:

∇2g ¼ ð1=ξ2Þðg − glocÞ; ð3Þ

where ∇2ð·Þ denotes the Laplacian operator, ξðμÞ ¼
Ad=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijμ − μsj
p

is the stress-dependent cooperativity length,
and A is a dimensionless material parameter called the
nonlocal amplitude. In the absence of the ∇2g term, the
model reduces to the local description with g ¼ gloc;
however, when flow inhomogeneity is present, this term
accounts for nonlocal effects and quantitatively captures the
loss of local constitutive uniqueness between μ and I.
Next, we apply our nonlocal model to the problem of

secondary rheology, by using finite-element calculations in

the commercial package ABAQUS/STANDARD [26]. For
computational efficiency, we consider a two-dimensional
analogue of the experiments of Reddy, Forterre, and
Pouliquen [9], pictured in Fig. 1. The geometry is a planar
annular shear cell with rough walls at an inner radius Ri and
outer radius Ro. The inner wall is specified to rotate at a
fixed rate Ω, and the outer wall does not rotate but may
move radially so as to impart a confining pressure Pa. A
circular intruder with diameter D, which we specify to be
rigid and frictionless, is located at a distance L away from
the inner wall. Following Ref. [9], we take Ri=d ¼ 60,
Ro=d ¼ 180, and D=d ¼ 2, throughout, and consider
different values of L=d. The value of outer radius is
sufficiently large so as not to affect the calculation results,
consistent with experiments. Finally, in our calculations,
either the speed of the intruder V or the force applied to the
intruder F is specified. We then calculate the steady flow
fields predicted by the nonlocal rheology using ABAQUS.
The governing partial differential equations are the equi-
librium equations ∂σij=∂xj ¼ 0i, where inertia is neglected,
since we are considering a quasistatic process and there is
no gravitational body force since we are in two dimensions,
and the differential relation for the granular fluidity (3).
These are solved in conjunction with the constitutive
equations (1) and (2) by means of a user element subroutine
in ABAQUS. The mechanical boundary conditions are as
described above, and, for the fluidity boundary conditions,
we specify that nið∂g=∂xiÞ ¼ 0 at the inner and outer walls,
where ni is the outward surface normal. A detailed dis-
cussion of the intruder boundary conditions is given in
Supplemental Material [27]. The necessary material param-
eters are fμs; b; Ag. Following previous work involving
glass beads [13,17,28], we take μs ¼ 0.3819 and b ¼
0.9377. For the two-dimensional problem, we take A ¼
1.8 (see Supplemental Material [27] for a justification of
this selection).
In our first set of simulations, we determine the critical

force Fc. To this end, we fix the inner wall (Ω ¼ 0) and
specify normalized intruder velocities V

ffiffiffiffiffiffiffiffiffiffiffiffi

ρs=Pa

p

spanning
from 10−7 to 10−2. Each calculation quickly reaches a

FIG. 1. Schematic of the two-dimensional analogue of the
experiments of Ref. [9].
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steady state, and we plot the normalized steady-state
applied force F=PaD as a function of velocity in Fig. 2
(see Supplemental Material [27] for a demonstration of
mesh insensitivity). This result was observed to be identical
for L=d ¼ 18, 24, and 34. For normalized velocities greater
than approximately 10−5, we see a clear rate dependence. In
the calculations, this corresponds to a non-negligible
portion of the domain achieving μ > μs so that the gloc
term in (3) has a substantial effect in this region. See the
contour plot inset of the stress ratio μ in the region of the
intruder in Fig. 2 corresponding to V

ffiffiffiffiffiffiffiffiffiffiffiffi

ρs=Pa

p ¼ 1 × 10−3.
The white region represents the intruder, which is moving
upwards, and the region in which μ > μs is denoted as
black. Much of the region in front of and behind the
intruder has met this condition. However, for V

ffiffiffiffiffiffiffiffiffiffiffiffi

ρs=Pa

p

less than 10−5, the force becomes nominally rate indepen-
dent, plateauing to a constant value of Fc=PaD ¼ 2.91,
which we denote as the critical force. In this case, the region
around the intruder where μ > μs is significantly smaller
(see the inset in Fig. 2 for V

ffiffiffiffiffiffiffiffiffiffiffiffi

ρs=Pa

p ¼ 1 × 10−7). The
relation of Fig. 2 is consistent with analogous experimental
observations [see Fig. 1(c) of Ref. [9] and Fig. 2(b)
of Ref. [10]].
Next, we examine creep phenomenology when the inner

wall is rotated. In our calculations, we first apply a force to
the intruder less than Fc and hold the force constant for a
period of time. During this time, the intruder does not
creep, and the granular fluidity is zero everywhere. The
inner wall is then moved at a fixed speed in a tangential
direction which opposes the force applied to the intruder
(see Fig. 1). This sets up a primary flow characterized by an
inner-wall-located shear band and induces a granular
fluidity field which is nonzero everywhere. This fluidity
field decays with radial distance from the inner wall and is
quite small in the region of the intruder. However, fluid-
ization of this region causes the intruder to begin creeping.

Steady state is quickly reached, and we denote the constant
creep speed of the intruder as Vc. Figure 3 shows the
normalized intruder creep speed Vc

ffiffiffiffiffiffiffiffiffiffiffiffi

ρs=Pa

p

as a function
of the normalized inner wall speed ΩRi

ffiffiffiffiffiffiffiffiffiffiffiffi

ρs=Pa

p

for a fixed
applied force F=Fc ¼ 0.75 and intruder position L=d ¼
24, indicating a linear relationship with Vc=ΩRi ¼
1.3 × 10−3. This is a hallmark of rate independence and
demonstrates that the material time scale d

ffiffiffiffiffiffiffiffiffiffiffiffi

ρs=Pa

p

is
nominally irrelevant for ΩRi

ffiffiffiffiffiffiffiffiffiffiffiffi

ρs=Pa

p ≲ 10−3 and that the
time scale dictating the creep speed of the intruder is that
imposed by the inner wall speed. As the inner wall speed is
increased further, a deviation from linearity is observed in
the calculations, indicating an increased role of the local
rheology. This rate-independent regime of creep was ob-
served in all configurations of experiments [see Fig. 4(a) of
Ref. [8], Fig. 2(b) of Ref. [9], and Fig. 3 of Ref. [10]].
The creep speed in the rate-independent regime depends

on the force applied to the intruder F=Fc as well as the
distance between the intruder and the inner wall L=d. (We
did not examine the effect of intruder size D=d in this
study.) The calculated dependence is shown as symbols in
Fig. 4 for L=d ¼ 18, 24, and 34 and ΩRi

ffiffiffiffiffiffiffiffiffiffiffiffi

ρs=Pa

p ¼
1 × 10−5. For F < Fc, we observe that (i) the intruder

FIG. 2 (color online). Force applied to the intruder as a function
of intruder velocity when the inner wall is fixed Ω ¼ 0. The
dashed line indicates the rate-independent critical force
Fc=PaD ¼ 2.91. Insets show contour plots of the stress ratio
μ in the region of the intruder; black regions denote where μ > μs.

FIG. 3. Intruder creep speed as a function of inner wall speed
for F=Fc ¼ 0.75 and L=d ¼ 24, demonstrating nominal rate
independence in a range of sufficiently small inner wall speeds;
the dashed line denotes the linear relation Vc=ΩRi ¼ 1.3 × 10−3.

FIG. 4 (color online). Intruder creep speed as a function of
applied force for L=d ¼ 18, 24, and 34 and ΩRi

ffiffiffiffiffiffiffiffiffiffiffiffi

ρs=Pa

p ¼
1 × 10−5. Simulated creep data are shown as symbols; the dashed
line represents the drag force versus intruder velocity relation
of Fig. 2.
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creeps faster for higher applied force and (ii) the intruder
creeps faster when it is closer to the inner wall for all
applied forces—both intuitive notions. What is nonintuitive
is that the relation between the creep speed and applied
force for F < Fc and fixed L=d is nonlinear. In fact, the
relation in this range is exponential in character, consistent
with experiments (see Fig. 4 of Ref. [9] and Fig. 4 of
Ref. [10]). Also plotted in Fig. 4 as a dashed line is the drag
force versus intruder velocity relationship of Fig. 2. As the
applied force is increased past Fc, the simulated data for
different L=d converge and asymptotically approach the
rate-dependent part of this relation, which is dominated by
the local rheology rather than nonlocal effects. The con-
vergence of the data around F ¼ Fc is qualitatively
consistent with experiments [9]. (For more discussion of
this point and additional simulated creep data, see
Supplemental Material [27].)
The faster-than-linear character of the results of Fig. 4

may be understood by using the following examination of
the differential relation (3), while the specifically expo-
nential shape observed is assessed in Supplemental
Material [27]. The differential relation (3) has the structure
of an inhomogeneous Helmholtz equation with gloc playing
the role of a “source” term.When subjected to the boundary
condition nið∂g=∂xiÞ ¼ 0 at the walls, the fluidity field will
be zero everywhere if gloc ¼ 0 (or μ < μs) everywhere and
will be nonzero everywhere if gloc > 0 (or μ > μs) any-
where. In the present simulations, rotation of the inner wall
sets up a small region at the inner wall where gloc > 0—a
shear band—and, as one moves away from the shear band,
the fluidity undergoes an exponential-like decay but
remains nonzero. This fluidity field may equivalently be
thought of as a radially dependent viscosity field with the
viscosity lower closer to the shear band. This justifies the
increase of creep speed with decreasing L=d. A simplistic
Stokes-flow view of the creep problem would indicate that
the creep speed and applied force should be linearly related.
The fact that this is not observed indicates that the presence
of the intruder has an important influence on the fluidity
field. This effect is summarized in Fig. 5. Figure 5(a) shows
contour plots of the stress ratio field μ in the region of the
intruder (which is white and moving upwards) for two
values of the applied force F=Fc, 0.75 and 0.95, L=d ¼ 24,
and ΩRi

ffiffiffiffiffiffiffiffiffiffiffiffi

ρs=Pa

p ¼ 1 × 10−5. In both cases, the stress ratio
μ reaches and just exceeds the critical value μs, leading to
gloc > 0 in a very small region of the intruder boundary. In a
sense, this “activates” an additional source at the intruder.
As can be seen in Fig. 5(a), while this region is indis-
cernible for F=Fc ¼ 0.75, more of the region surrounding
the intruder reaches μs for the case of F=Fc ¼ 0.95, and, as
a consequence, the “source” is stronger and the fluidity is
increased in the region of the intruder. Figure 5(b) shows
the fluidity g along a radial path from the inner wall to the
intruder for F=Fc ¼ 0.75 and 0.95. Near the inner wall,
away from the intruder, the fluidity field is essentially the

same in both cases. However, in the region of the intruder,
the stronger source in the higher force case leads to a local
fluidity which is approximately 6 times greater—or, equiv-
alently, a viscosity which is 6 times less. This decrease in
viscosity combined with the greater applied force leads to
the faster-than-linear increase in creep speed with force
observed in Fig. 4.
In conclusion, we have demonstrated that the nonlocal

granular rheology is capable of describing the phenom-
enology of secondary rheology [8–10], offering a means for
more thorough, quantitative interpretation of secondary
rheology experiments and providing a complete description
of all relevant fields, including those that might be difficult
to measure experimentally, such as stress. Finally, the fact
that the model describes both primary flow fields [17] as
well as secondary rheology demonstrates the generality of
the model and paves the way for modeling other complex
phenomena in dense granular flow, such as flow anisotropy
[10] and nonmonotonic rheology [29,30].
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