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We explore possible superconducting states in t2g multiorbital correlated electron systems with strong
spin-orbit coupling (SOC). In order to study such systems in a controlled manner, we employ large-scale
dynamical mean-field theory (DMFT) simulations with the hybridization expansion continuous-time
quantum Monte Carlo (CTQMC) impurity solver. To determine the pairing symmetry, we go beyond the
local DMFT formalism using parquet equations to introduce the momentum dependence in the two-particle
vertex and correlation functions. In the strong SOC limit, a singlet, d-wave pairing state in the electron-
doped side of the phase diagram is observed at weak Hund’s coupling, which is triggered by
antiferromagnetic fluctuations. When the Hund’s coupling is comparable to SOC, a twofold degenerate,
triplet p-wave pairing state with relatively high transition temperature emerges in the hole-doped side of the
phase diagram, which is associated with enhanced charge fluctuations. Experimental implications to doped
Sr2IrO4 are discussed.
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Introduction.—The investigation of novel electronic
states in correlated electron systems with spin-orbit cou-
pling has been a recent subject of intensive research [1].
Early experiments that prompted such activities are the
studies of the iridium perovskite oxide Sr2IrO4 [2–10].
Because of strong spin-orbit coupling (SOC), the t2g
orbitals of Ir4þ ions split into Jeff ¼ 1=2 doublet and
Jeff ¼ 3=2 quadruplet, leading to a spin-orbit-induced
Mott insulator, with a moderate Hubbard interaction U.
Given the similarity in lattice structure and Mott physics
between Sr2IrO4 and La2CuO4, it was proposed that a spin
singlet d-wave high temperature (high Tc) superconduc-
tivity emerges in doped iridates [6,11]. If this turns out to be
true, it would be a significant progress in decades-long
efforts to find high Tc superconductivity in other oxides
materials besides cuprates. On the other hand, doped
iridates are inherently multiorbital systems and the analogy
to the cuprates may be justified only in the extremely strong
SOC limit. The determination of the ground states in such
multiorbital systems is a highly challenging theoretical
work when the SOC and some of the multiorbital inter-
actions such as Hund’s coupling become comparable to
each other, which could easily be the case in 4d or 5d
electron systems.
In this Letter, we provide a theoretical study of possible

superconductivity in t2g multiorbital systems with SOC
using the combination of the DMFTwith CTQMC impurity
solver [12–15] and self-consistent relations between two-
particle correlation or vertex functions in parquet equa-
tions [16–20]. The DMFT with a CTQMC impurity solver
can capture the local correlation effects, but cannot provide

the momentum dependence of the vertex functions or two-
particle correlation functions, which is necessary for the
determination of the dominant pairing channel and other
instabilities. A standard way to introduce the momentum
dependence is to generalize the single-site effective impu-
rity problem to a finite cluster. While the cluster DMFT has
been successful for one-band Hubbard models [21–24], it
would be computationally too costly if one applies it to the
multiorbital models with intra-, interorbital interactions,
and SOC. Here we use an alternative method via the two-
particle diagrammatic relations in the Bethe-Salpeter and
parquet equations. As described below, we use the results
of the DMFT with CTQMC as an input and bring out
momentum dependence of necessary vertex functions via
the relations between vertex and two-particle correlation
functions in different interaction channels.
Our major findings are summarized in the phase diagram

of Fig. 1, where J is the Hund’s coupling and n is the band
filling. When J becomes comparable to SOC, a twofold
degenerate p-wave triplet (in terms of a Kramers-doublet)
superconductivity emerges in the hole-doped side, with
moderately high transition temperature. On the other hand,
d-wave superconductivity arises in the electron-doped side
when J is small, but is suppressed as J is increased. Note
that previous studies reported d-wave superconductivity in
the electron-doped side [25–27] and s�� wave in the hole-
doped side [27], but did not find odd-parity p-wave triplet
superconductivity. It is also important to emphasize that our
odd-parity triplet pairing state is different from the spin-
triplet, orbital-singlet pairing state found in previous single-
site DMFT studies [28,29] and mean-field study [30].
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We show that the emergence of the p-and d-wave super-
conducting instabilities in the hole- and electron-doped
sides are related to enhanced charge and antiferromagnetic
fluctuations, respectively. Below we discuss the micro-
scopic model, numerical method, and implications of our
results to doped iridates.
Numerical method.—The t2g three-orbital Hubbard

model on the square lattice is given by H ¼
Hkin þHSOC þHI, where Hkin¼

P
kασϵαðkÞc†kασckασ ,

ckασ is the electron operator with momentum k, spin
σ ¼ ↑;↓, and orbital α ¼ ðdyz; dzx; dxyÞ. The SOC term

is given by HSOC ¼ λ
P

i;αα0;σσ0 hαjLijα0ihσjSijσ0ic†iασciα0σ0,
andLiðSiÞ is the orbital(spin) angular momentum operator.
The interaction term can be written as

HI ¼ U
X

i;α

niα↑niα↓ þ
U0

2

X

i;α≠α0
niαniα0

þ J
2

X

i;α≠α0;σσ0
c†iασc

†
iα0σ0ciασ0ciα0σ

þ J0

2

X

i;α≠α0
c†iα↑c

†
iα↓ciα0↓ciα0↑; ð1Þ

where niασ ¼ c†iασciασ and niα ¼
P

σniασ. U
0 and J0 denote

interorbital Hubbard interaction and pair hopping, respec-
tively. In the atomic limit, these four Kanamori parameters
satisfy the relation, U ¼ U0 þ J þ J0 and J ¼ J0, which is
assumed in the following discussions. Thus we explore the
phase diagram in terms of U and the Hund’s coupling J.

The SOC mixes electron spin and orbital quantum num-
bers; hence, it is useful to first diagonalize the noninteracting
Hamiltonian HkinþHSOC¼

P
kmsEmðkÞa†kmsakms (see

SupplementalMaterial [31] for details), wherea†kms represent
the spin-orbit entangled eigenstates characterized by the band
index m ¼ ð1; 2; 3Þ and pseudospin s (a Kramers doublet)
with the dispersion EmðkÞ. We adopt the tight-banding
parameters of ϵαðkÞ used in Refs. [26,27,32,33], the near-
est-neighbor hopping between dxy orbitals as the energy unit
t, and the spin-orbit coupling λ ¼ 2t. The energy dispersions
EmðkÞ and the Fermi surface (FS) at filling n ¼ 5 are shown
inFig. 2. Them ¼ 1 band,mostlymade ofJeff ¼ 1=2 state, is
separated from the other two bands. Near n ¼ 5 band filling,
only them ¼ 1 band crosses the Fermi level so that there is a
single electronlikeFS, as shownby the red contour line and its
projection to the bottom of the Brillouin zone (BZ) in Fig. 2.
Numerical method.—To solve the interacting electron

problem, we employ the DMFT with CTQMC impurity
solver [21,22]. This method maps the original, strongly
correlated, lattice system into a quantum impurity problem
embedded in a self-consistently determined bath. In this
study, we use the hybridization expansion CTQMC impu-
rity solver [12–14]. It diagonalizes the atomic limit of the
interacting problem, and diagrammatically expands the
impurity partition function in powers of the hybridization
function between the impurity and the bath. Since this
algorithm treats the local interactions exactly, it is particu-
larly efficient at moderate and strong interactions. We use
about 109 Monte Carlo samples per simulation to obtain
converged single-particle results, and another 109 QMC
samples to obtain two-particle quantities. The interaction
strength is chosen to be close to the bare bandwidth,
U ¼ 12t [34], and we can achieve temperatures as low as

FIG. 1 (color online). Phase diagram of the t2g Hubbard model
in terms of J=U and filling n, obtained from DMFTwith CTQMC
and parquet formulation, where J andU represent the Hund’s and
intraorbital Hubbard interaction, respectively. The tight-binding
parameters and spin-orbit coupling strength are fixed (see main
text), and the lowest temperature achieved in the simulation is
0.05t. Symbols correspond to the parameter sets where simula-
tions are performed. FL, SC-d, AFM-I,AFM-M,SC-p, andFM-M
stand for Fermi liquid, d-wave singlet pairing, antiferromagnetic
insulator, antiferromagnetic metal, p-wave triplet pairing, and
ferromagnetic metal, respectively. The shaded areas are guides to
the eye, and the two crosses highlight the two selected parameter
sets where the instability analyses are presented in Figs. 4 and 5.

FIG. 2 (color online). The band dispersion EmðkÞ and Fermi
surface (FS) at filling n ¼ 5. The spin-orbit coupling λ separates
them ¼ 1 and them ¼ 2; 3 bands. At λ ¼ 2t, the FS only crosses
the m ¼ 1 band, as shown by the red contour line and its
projection to the bottom of the BZ.
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T ¼ 0.05t (βt ¼ 20) before a serious minus-sign problem
renders the data untrustable.
In order to obtain information about pairing instabilities,

one needs to know the momentum and frequency depend-
ence of the pairing vertex functions. However, in the DMFT
simulation, the two-particle correlation functions in the
particle-particle (pp) and particle-hole (ph) channels
χph=ppðω;ω0; νÞ can only be measured at the impurity site,
hence only have frequency dependence. Here we use the
parquet equations to introduce momentum dependence in
two-particle quantities as described below. The parquet
equations relate the irreducible vertex function in one
interaction channel to those in other channels [16]. In our
case, we consider four interaction channels: the particle-hole
density (ph-d), particle-hole magnetic (ph-m), particle-
particle singlet (pp-s), and particle-particle triplet (pp-t)
channels [17–20,23,24]. A detailed description of the
parquet formalism is given in the Supplemental Material
[31] and here we only outline the main idea.
For example, in order to explore the singlet-triplet paring

instabilities, we need to find the momentum and frequency
dependence of the irreducible vertex functions in pp-s=t
channels, Γs=t

ppðP;P0; QÞ, with P≡ ðk;ωÞ, P0 ≡ ðk0;ω0Þ,
Q≡ ðq; νÞ. In the DMFT-CTQMC, one obtains the lattice
single-particle Green’s function GðPÞ and the ph-d=m
two-particle correlation functions χd=mph ðω;ω0; νÞ measured
on the impurity. We first consider the local version
of the Bethe-Salpeter equation, χd=mph ðω; ω0; νÞ ¼
χph0 ðω; νÞ þ χph0 ðω; νÞPω″Γd=m

ph ðω; ω00; νÞχd=mph ðω00; ω0; νÞ.
Using χd=mph ðω;ω0; νÞ obtained in the DMFT, one
can extract the local irreducible vertex functions,
Γd=m
ph ðω;ω00; νÞ.
To introduce the momentum dependence in the vertex

functions starting from GðPÞ, χd=mph ðω;ω0; νÞ, and

Γd=m
ph ðω;ω00; νÞ, let us turn to the lattice Bethe-Salpeter

equation in Fig. 3(a); χd=mph ðP;P0; QÞ ¼ χph0 ðP;QÞþ
χph0 ðP;QÞPP00Γd=m

ph ðP;P00; QÞχd=mph ðP00; P0; QÞ, where

χph0 ðP;QÞ can be constructed from single-particle
Green’s functions χph0 ðP;QÞ ¼ −NβGðPÞGðPþQÞ with

N, the lattice size. We then use Γd=m
ph ðω;ω00; νÞ (obtained in

the DMFT) as an input for Γd=m
ph ðP;P00; QÞ, and later find

the momentum dependence of this and other quantities
using an iteration method. Once Γd=m

ph ðω;ω00; νÞ is used and
the sums over k, k0 are applied to both sides of the
equation, the Bethe-Salpeter equation is reduced to

χd=mph ðω;ω0;QÞ
¼χph0 ðω;QÞ þ χph0 ðω;QÞ

X

ω″

Γd=m
ph ðω;ω00;νÞχd=mph ðω00;ω0;QÞ;

ð2Þ

where χph0 ðω; QÞ ¼ P
kχ

ph
0 ðP;QÞ and χd=mph ðω;ω0; QÞ ¼

P
k;k0χd=mph ðP;P0; QÞ. χd=mph ðω;ω0; QÞ is then obtained by

solving Eq. (2).
Nowwe consider the parquet equation in Fig. 3(b), where

the irreducible vertex functions in the pp channel,
Γs=t
ppðP;P0; QÞ, are related to Γd=m

ph ðP;P0; QÞ and

χd=mph ðP;P0; QÞ via the ph vertex ladders Φd=m
ph ¼

Γd=m
ph ⋆χd=mph ⋆Γd=m

ph , where ⋆ represents the convolution in
bothmomentum and frequency. In order to get the first order

results for Γð1Þ;s=t
pp ðP;P0; QÞ, we use Γd=m

ph ðω;ω0; νÞ and

χd=mph ðω;ω0; ~QÞ for Γd=m
ph ðP;P0; QÞ and χd=mph ðP; P0; ~QÞ in

the ph ladders Φd=m
ph with the momentum-frequency con-

volution replaced by a frequency-only convolution. Here,
~Q ¼ P − P0 or Pþ P0 þQ, which provides the momentum

dependence in Γð1Þ;s=t
pp ðP;P0; QÞ. A similar procedure is

employed to get Γð1Þ;d=m
ph ðP; P0; QÞ. These first order results

are now iterated back to the full Bethe-Salpeter and parquet
equations, and then successive iterations would generate
higher order results. In principle, this procedure needs
to be repeated until self-consistency is achieved. Such
calculations, however, require an unrealistic amount of
computing resources. Instead, we check explicitly that the
results of Γð1Þ, Γð2Þ, and Γð3Þ are consistent with each other
and, as shown later, provide the same trend in the instability
analysis for various interaction channels (in fact, the
results are almost converged at Γð3Þ; see Supplemental
Material [31]).

FIG. 3 (color online). (a) Bethe-Salpeter equation in the
particle-hole density or magnetic channels. χd=mph and Γd=m

ph are

two-particle correlation and vertex functions, and χph0 is the bare
two-particle correlation function. (b) Parquet equation for the
particle-particle singlet vertex, Γs

ppðP;P0; QÞ. It is decomposed
into fully irreducible vertex function Λs

pp and cross-channel
contributions from particle-hole density or magnetic vertex
ladders Φd=m

ph ¼ Γd=m
ph ⋆χd=mph ⋆Γd=m

ph (complete equations are given
in the Supplemental Material [31]).
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For instance, we use the irreducible vertex functions

Γð1Þ;s=t
pp ðP;P0; QÞ and/or Γð2Þ;s=t

pp ðP;P0; QÞ to study super-
conducting instabilities via

X

P0
Γs=t
ppðP;P0; QÞχpp0 ðP0; QÞϕðP0Þ ¼ λϕðPÞ; ð3Þ

where the leading eigenvalue (LEV) λ and the leading
eigenvector ϕðPÞ need to be analyzed. As temperature
approaches the transition temperature Tc, λ → 1, and the
corresponding ϕðPÞ shows the momentum dependence of
the gap function [23,35]. Similar analysis can be performed
in the ph-d=m channels.
Results and discussions.—We compute the LEVs of Γð1Þ

and Γð2Þ for the corresponding vertex functions as a
function of temperature T for singlet-triplet superconduc-
tivity, ferromagnetic, and antiferromagnetic instabilities
across the phase diagram, and the leading eigenvector is
used to determine the ground state. Figure 4 shows the
results for the parameter setU ¼ 12t,U0 ¼ 11.6t, J ¼ 0.2t,
n ¼ 5.2. This is an electron-doped case with a very small
Hund’s coupling J=U ∼ 0.017. The main panel shows the
LEVs obtained from Eq. (3) using Γð1Þ (the results of Γð2Þ
show the same trend). As temperature decreases, the
(pseudospin-)singlet pairing LEV in the m ¼ 1 band
dominates over other channels and the antiferromagnetic
channel is the next leading instability. Moreover, the
leading eigenvector of the singlet pairing clearly has the
dx2−y2 momentum dependence, as shown in the upper inset
(the lower inset shows the leading eigenvector of Γð2Þ which
has the same d-wave symmetry). In the electron-doped
side, both Hund’s coupling and SOC prefer to have Jeff ¼
3=2 bands completely filled, and the extra electron goes to
the initially half-filled Jeff ¼ 1=2 band. Thus the d-wave
singlet pairing mainly comes from the Jeff ¼ 1=2 band.

Moreover, the corresponding FS is very similar to that of
the hole-doped, one-band Hubbard model on a square
lattice. As shown in the cluster DMFT computations of a
one-band Hubbard model, the vertex function for the d-
wave superconducting instability is dominated by antifer-
romagnetic fluctuations [24]. Our analysis of the parquet
equation shows that the magnetic vertex ladder Φm

ph at q ¼
ðπ; πÞ is indeed the dominant contribution to Γs

pp.
In turn, the main panel of Fig. 5 shows the LEVs of Γð1Þ

at a large Hund’s coupling (J=U ∼ 0.17) in a hole-doped
case, with the parameter set U ¼ 12t, U0 ¼ 8t, J ¼ 2t,
n ¼ 4.9. As the Hund’s coupling increases, the (pseudo-
spin-) triplet pairing in them ¼ 1 band becomes the leading
instability in the hole-doped side while the d-wave singlet
pairing in the electron-doped side is suppressed. The triplet
pairing instability found here has twofold degenerate
LEVs and the corresponding leading eigenvectors have
p0
x ¼ −px − py and p0

y ¼ −px þ py symmetries. The
upper(lower) inset of Fig. 5 shows the leading eigenvector
obtained from Γð1ÞðΓð2ÞÞ with p0

x symmetry. These results
imply that the triplet superconductivity is the dominant
instability in the hole-doped side. This p-wave triplet
superconductivity emerges from a delicate balance between
SOC and Hund’s coupling [30]. When holes are intro-
duced, the Hund’s coupling prefers to have holes in Jeff ¼
3=2 bands as well as the Jeff ¼ 1=2 band, while the spin-
orbit coupling likes to have Jeff ¼ 3=2 completely filled
and to put all the extra holes in the Jeff ¼ 1=2 band. Thus,
the two interactions are not compatible with each other.
Only when the SOC and Hund’s coupling are balanced, the
ferromagnetic fluctuation induced by Hund’s coupling
generates the triplet pairing state. If the Hund’s coupling
becomes even larger, as shown in the phase diagram
(Fig. 1), in the hole-doped side, the system becomes a

FIG. 4 (color online). The leading eigenvalues (LEV) of Γð1Þ as
a function of temperature in various instability channels, for an
electron-doped case (n ¼ 5.2) with a small Hund’s coupling
(J ¼ 0.2t) and U ¼ 12t, U0 ¼ 11.6t. The upper (lower) inset
shows the d-wave symmetry of the leading eigenvector in the
singlet pairing channel for Γð1Þ (Γð2Þ).

FIG. 5 (color online). The leading eigenvalues (LEV) of Γð1Þ as
a function of temperature in various instability channels, for a
hole-doped case (n ¼ 4.9) with a large Hund’s coupling (J ¼ 2t)
and U ¼ 12t, U0 ¼ 8t. The upper(lower) inset shows the p0

x ¼
−px − py symmetry of the leading eigenvector in the triplet
channel for Γð1ÞðΓð2ÞÞ. The other degenerate p-wave component,
p0
y ¼ −px þ py, is not shown.
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ferromagnetic metal. Thus, we need a significant Hund’s
coupling to induce the triplet pairing via ferromagnetic
fluctuations, but not-too-large Hund’s coupling, which
eventually favors a ferromagnetic metal.
The odd-parity triplet pairing is doubly degenerate with

components p0
x and p0

y, any linear combination of both
p-wave components is possible below Tc. Given that both
Ginzburg-Landau theory and BCS-type mean-field
approaches favor a fully gapped superconducting phase
that breaks time-reversal symmetry [36], thepx þ ipy triplet
pairing state could be selected. Therefore, our findings may
support the chiral px þ ipy topological superconducting
phase in the hole-doped side of the phase diagram.
It is clear from Figs. 4 and 5 that the triplet pairing

transition temperature in the hole-doped side is higher than
the singlet pairing one in the electron-doped side. That is,
the triplet LEVs approaches 1 when 0.06t≲ T ≲ 0.1t,
whereas the singlet LEV is still below 1 at T ¼ 0.05t.
The same behaviors also hold for the LEVs obtained from
Γð2Þ analyses. This implies that the p-wave superconduc-
tivity in the hope-doped side could have relatively higher
Tc than the d-wave superconductivity in the electron-doped
side. Although superconductivity has not been observed in
electron-doped Sr2IrO4 [37], our results could stimulate
more experimental efforts in the hole-doped side, which
may be achieved by substituting Na, K for Sr.
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