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Bulk TiSe2 is an intrinsically layered transition metal dichalcogenide hosting both superconducting and
charge-density-wave ordering. Motivated by the recent progress in preparing two-dimensional transition
metal dichalcogenides, we study these frustrated orderings in a single trilayer of TiSe2. Using a
renormalization group approach, we find that electronic correlations can give rise to charge-density-wave
order and two kinds of superconductivity. One possible superconducting state corresponds to unconventional
sþ− pairing. The other is particularly exciting as it is chiral, breaking time-reversal symmetry. Its stability
depends on the precise strength and screening of the electron-electron interactions in two-dimensional TiSe2.
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Introduction.—Transition metal dichalcogenides (TMDs)
with the chemical formula MX2, where M is a transition
metal from groups IV-VI (Ti, Zr, Hf, V, Nb, Ta, etc.) and X is
a chalcogen element (Se, S, Te), are emerging as a new class
of two-dimensional materials with high potential for nano-
electronics applications [1–4]. The intense research activity
in this field is inspired by the graphene boom, driven by
the possibility of manufacturing a purely two-dimensional
material with high carrier mobility. TMDs consist of stacked
X-M-X trilayers which, like graphene, have hexagonal
symmetry. These trilayers are held together by weak van
der Waals forces, which allows exfoliation of the individual
trilayers and deposition onto various substrates [5].
TMDs display a rich variety of ordering phenomena.

Metallic TMDs have a generic instability towards the
formation of different types of charge-density waves
(CDWs), some also host superconductivity (SC). Because
of the presence of transition metal elements, electron-
electron interactions may play a significant role here, giving
us a highly interestingmix of ingredients. It iswell known that
the competition of SC with density waves in the presence of
electronic correlations may lead to unconventional super-
conducting order, particularly in lower-dimensional systems.
Commonly suggested examples are d-wave pairing in quasi-
2D cuprate superconductors [6], sþ− pairing in layered iron
pnictides [7,8], and p-wave triplet pairing in Sr2RuO4 [9].
Ordering in thesematerials remains under debatewith several
other proposals (e.g., Refs. [10–12]).
Sr2RuO4 is particularly interesting as its superconduc-

tivity may be characterized by a chiral order parameter that
spontaneously breaks time-reversal symmetry [13], a prop-
erty it shares with just a few other very low temperature
SCs, e.g., UPt3 [14] and ðTMTSFÞ2PF6 [15]. Ordering
which breaks time reversal has also been discussed in the

context of cuprates [16] and NaxCoO2 · yH2O [17,18].
Vortices in these chiral SCs harbor Majorana fermions [19],
which may constitute the building blocks needed for
future topological quantum computing technologies, robust
against decoherence [20].
We focus on frustrated superconductivity in TiSe2,

which in bulk form is a layered semimetal with a CDW
transition at ∼200 K [21,22]; it has recently emerged that
the CDW order has chiral character [23–26]. Upon inter-
calation with copper, the CDW melts and nodeless SC
appears with a critical temperature Tc ≈ 4 K [27,28]. In this
Letter, we consider a single trilayer of TiSe2 and show that
it hosts exciting ordering phenomena. Using a renormal-
ization group (RG) approach, we show that the melting
of CDW order gives way to one of two possible super-
conducting ground states, both of which are unconven-
tional. The first is a time-reversal invariant (TRI) state with
sþ− pairing while the other corresponds to time-reversal-
breaking (TRB) chiral SC; see Fig. 1. Their relative
stability depends on the precise strength and screening
of the electron-electron interactions in a 2D trilayer of
TiSe2 deposited on some substrate.
Effective Lagrangian and couplings.—We performed

ab initio calculations using FPLO (full-potential local-
orbital minimum-basis code) [29,30] to find the Fermi
surfaces of a single TiSe2 trilayer. In line with previous
reports [31], we find (i) two holelike pockets around the
Γ point which are nearly degenerate and (ii) three electron-
like pockets, one around each M point in the Brillouin
zone. In the 3D case, these bands become elongated along
the Z axis and form distorted cylinders—the 3D material
has an additional spherical pocket around the Γ point.
Ab initio Fermi surfaces show approximate nesting

between electron and hole pockets, which leads to
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logarithmic singularities in both particle-particle and
particle-hole channels. In order to treat these on an equal
footing, we use RG analysis to find the low energy
couplings. There is, in fact, good nesting at energies above
the Fermi level where our RG procedure operates.
In the following RG analysis, we approximate the band

structure as follows. We merge the two hole pockets around
the Γ point and give it the band index 0. We associate the

indices α ¼ 1; 2; 3 with the three electron pockets around
the M points. The electron and hole pockets are approx-
imately nested, so that there are nine different scattering
processes, U1–U9, allowed by momentum conservation
(see Supplemental Material for a diagrammatic represen-
tation [32]). As the Fermi surfaces have small radii,
these couplings can be taken as independent of the precise
initial and final momenta. The system is described by the
Lagrangian

L ¼ ψ†
0ð∂τ − ε0kÞψ0 þ

X3

α¼0

ψ†
αð∂τ − ϵαkÞψα −

�
U6ðψ†

0ψ
†
1ψ2ψ3 þ ψ†

0ψ
†
1ψ3ψ2 þ cyclic exchangeÞ

þ 1

2
U4ψ

†
0ψ

†
0ψ0ψ0 þ

X3

α¼1

�
U1ψ

†
0ψ

†
αψαψ0 þU2ψ

†
0ψ

†
αψ0ψα þ

1

2
U3ðψ†

0ψ
†
0ψαψα þ H:c:Þ þ 1

2
U5ψ

†
αψ

†
αψαψα

�

þ 1

2

X

α≠β
½U7ψ

†
αψ

†
βψβψα þ U8ψ

†
αψ

†
βψαψβ þ U9ψ

†
αψ

†
αψβψβ�

�
: ð1Þ

We have implicitly assumed the spin structure σσ0σ0σ;
e.g., U2ψ

†
0ψ

†
αψ0ψα ¼

P
σσ0U2ψ

†
σ0ψ

†
σ0αψσ00ψσα. For nested

hole and electron pockets, the dispersions reduce to
ð−Þϵ0k ≈ ϵ1kþM1

¼ ðk2x þ k2yÞ=2m − μ. There are three
allowed umklapp processes: U3, U6, and U9, as depicted
in Fig. 2. We emphasize that U6 has no analog in other
multiband systems considered within RG recently,
neither in pnictides [33,34] nor in graphene [35,36]. In
pnictides, graphene, or even in the cuprates, RG flow gives
low energy couplings that are conducive to SDW order
[33,35,37]. In TiSe2, however, CDW order arises although
the microscopic interactions are repulsive. We later show
that it is precisely the U6 umklapp term that drives CDWas
opposed to SDW order.
RG flow proceeds by integrating out excitations

above a floating cutoff scale. Because of approximate
nesting, the electron-hole polarization bubble [jΠel-hj ∝
ðN=2Þ logðΛ=maxfT; μdgÞ] has the same logarithmic
divergence as the particle-particle bubble [Ch-h ¼
Cel-el ∝ ðN=2Þ logðΛ=TÞ]. We use conventional one-loop
RG keeping only logarithmically divergent terms given
by parquet diagrams. The flow of couplings is given by

_u1 ¼ u21 þ u23 − 2u26;

_u2 ¼ −2u22 − 2u26 þ 2u2u1;

_u3 ¼ u3f4u1 − 2u2 − u4 − u5 − 2u9g;
_u4 ¼ −u24 − 3u23;

_u5 ¼ −u23 − u25 − 2u29;

_u6 ¼ u6f2u1 − u2 þ u3 − u7 − u8g;
_u7 ¼ 2u26 − u27 − u28;

_u8 ¼ −2u7u8;

_u9 ¼ −u23 þ 2u26 − 2u5u9 − u29: ð2Þ
The derivative is with respect to RG time t ¼ logðW=EÞ,
where W is the bandwidth and E is the floating RG scale.
In addition, we have scaled the interaction amplitudes
Ui by the DOS at the Fermi level Ni (ui ≡ NiUi). The
derivation for u5 is illustrated in the Supplemental
Material [32]; others can be derived similarly. These
parquet equations are valid for the energy E≳ μ. Below
this energy, density-wave channels and superconductivity
decouple and the flow has to be modified [38]. In this

FIG. 2 (color online). Representative umklapp scatterings
allowed by the geometry of TiSe2. They arise from the symmetry

properties of theM points, viz., ~M1 þ ~M2 þ ~M3 ¼ 0 and 2 ~Mi ≡ 0.

FIG. 1 (color online). Unconventional superconducting
orders in a single trilayer of TiSe2. From left to right: Color
map representing superconducting phase, time-reversal-invariant
(TRI) sþ− ordering, and clockwise and anticlockwise variants of
chiral, time-reversal-broken (TRB) ordering.
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Letter, we consider small Fermi pockets, thus neglecting
the change of flow at E ∼ μ.
Ordering instabilities.—We introduce infinitesimal test

vertices in particle-hole and particle-particle channels:

δLCDW ¼
X3

α¼1

ρð0Þcα σ0ηη0ψ
†
0ηψαη0 ;

δLSDW ¼
X3

α¼1

ρð0Þsα σxηη0ψ
†
0ηψαη0 ;

δLSC ¼ Δð0Þ
0 iσyηη0ψ

†
0ηψ

†
0η0 þ

X3

α¼1

Δð0Þ
α iσyηη0ψ

†
αηψ

†
αη0 ;

where σ0 and σα are the identity and the Pauli matrices,
respectively. We suppose implicit summation over the spin
index. Writing the gap equation for each order, we identify
a corresponding “effective vertex” as a function of uα
couplings (see Supplemental Material [32]). Within this
analysis in the framework of the linear approximation,
the CDW and SDW orders at each M point decouple.
Furthermore, at each M point, both CDW and SDW order
parameters decouple into two parts, which we designate
“real” and “imaginary.” They obey, correspondingly,
ðρrc=s;αÞ� ¼ þρrc=s;α and ðρic=s;αÞ� ¼ −ρic=s;α. The effective
vertices for real and imaginary SDW and CDW orders are
given by ΓSDW

realor imag ¼ u1�u3, ΓCDW
realor imag ¼ u1 ∓ u3− 2u2.

The RG procedure gives the first instability when coming
down from a high temperature disordered phase, corre-
sponding to single-Q CDW or SDW order. This is
consistent with experiments on 3D TiSe2 where single-
Q order occurs at TCDW;1 ∼ 200 K, followed by multiple-
Q order at a lower TCDW;2 ∼ 186 K [23,25].
In the superconducting channel, however, our Fermi

surface geometry couples the order parameters on individ-
ual pockets. In accord with symmetry considerations, we
get four eigenmodes of superconductivity. (i) sþþ con-
ventional superconductivity, characterized by real order
parameters on the central pocket (Δ0 ¼ ΔΓ) and the
pockets around M points (Δ1 ¼ Δ2 ¼ Δ3 ¼ ΔM), both
having the same sign [sgnðΔΓÞ ¼ sgnðΔMÞ]. (ii) sþ− with
real order parameters having different signs on the central
and M pockets, i.e., [sgnðΔ0Þ ¼ −sgnðΔMÞ], as shown in
Fig. 1. It is analogous to the order parameter proposed
for the recently discovered Fe-based superconductors.
(iii),(iv) Chiral superconductivity, which breaks time-
reversal symmetry. At the level of linearized gap equa-
tions, the central pocket is completely decoupled with no
pairing. The M pockets order in one of two degenerate
solutions, corresponding to clockwise and anticlockwise
winding of the phase of the order parameters, shown in
Fig. 1. One of the two solutions is given by Δ1 ¼
ei2π=3Δ2 ¼ e−i2π=3Δ3 ¼ ΔM. A similar phase has been
proposed in highly doped graphene [35,36,39–41]
and MgCNi3 [42]. The effective vertices are given

by −ΓSC
sþþ ¼ −ðu4 þ u5 þ 2u9Þ=2 − sgnðu3ÞR, −ΓSC

sþ−
¼

−ðu4 þ u5 þ 2u9Þ=2 þ sgnðu3ÞR, −ΓSC
chiral ¼ −u5 þ u9,

where we have denoted R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12u23þðu4−u5 − 2u9Þ2

p
=2.

Before analyzing RG flow, we consider “bare inter-
actions” at mean-field level. As interactions are dominated
by intra-atomic Coulomb repulsion, the bare couplings are
proportional to the partial contributions of Ti t2g and Se p
orbitals to DOS at the Fermi pockets. From ab initio
calculations, we find orbital contributions to states in each
Fermi pocket to be NΓ

Ti ∼ 0.8, NΓ
Se ∼ 1.1, NM

Ti ∼ 0.75, and
NM

Se ∼ 0.2. We can now estimate the bare interactions, e.g.,

uð0Þ1 ¼uð0ÞðNΓ
TiN

M
TiþNΓ

SeN
M
SeÞ, uð0Þ4 ¼uð0ÞðfNΓ

Tig2þfNΓ
Seg2Þ,

where uð0Þ is a parameter capturing the strength of the
Coulomb interaction. Using these values, we find that the
largest effective vertex corresponds to real SDW order
ΓSDW
real ∼ ð0.33Þuð0Þ. Superconducting channels drop out as

their effective vertices are repulsive. Mean-field treatment
thus predicts SDW order; however, RG flow modifies the
couplings and changes the preferred ordering. Figure 3
shows the RG flow of effective vertices starting from these
bare interactions; chiral SC ultimately dominates.
Fixed points in the RG flow.—The flow of couplings

given by Eq. (2) is governed by three fixed points, wherein
all couplings scale with with one diverging quantity. We
rewrite the interactions as ui ¼ biu, with u > 0 being the
divergent scale. The three fixed points are as follows.
(i) CDW fixed point: b2 ¼ −1, with all other couplings

negligible, bi≠2 ¼ 0. At this fixed point, the largest effec-
tive vertices correspond to both real and imaginary sol-
utions of CDW order, ΓCDW

real ¼ ΓCDW
imag .

(ii) Chiral SC fixed point: b9 ¼ −b5=2 > 0, while other
b’s vanish. The largest effective vertex then corresponds
to chiral SC.

FIG. 3 (color online). RG flow of effective vertices. We have
used bare interactions estimated assuming intra-atomic Coulomb

interactions: uð0Þ1 ¼ uð0Þ2 ¼ uð0Þ3 ¼ 0.82uð0Þ, uð0Þ4 ¼ 1.85uð0Þ,
uð0Þ5 ¼ uð0Þ7 ¼ uð0Þ8 ¼ uð0Þ9 ¼ 0.6uð0Þ, and uð0Þ6 ¼ 0.675uð0Þ, taking
uð0Þ ¼ 0.2. Chiral SC eventually dominates.
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(iii) sþ− fixed point: b4 ¼ −1, b3 ¼
ffiffiffiffiffiffiffiffiffiffi
5=11

p
, b1 ¼ 1=11,

b5; b9 ¼ −1=3. The couplings b2, b6, b7, b8 vanish. The
leading vertex is sþ− SC.
We emphasize a key difference vis-à-vis phonon-driven

ordering: a phonon mechanism would suggest CDW order
and sþþ pairing. In contrast, electronic correlations give
CDWorder and sþ− or chiral SC. The absence of sþþ order
can be traced to the flow equation for u3 in Eq. (2). The sign
of u3 cannot change under RG flow and always remains
positive, thus favoring sþ− pairing over sþþ.
Phase diagram in RG scheme.—RG flow crucially

depends on bare values of couplings, which we estimate
from ab initio data for orbital DOS. Building upon this,
we introduce two free parameters, u06 and ζ, to character-
ize the bare couplings. The parameter u06 is simply the
bare value of the u6 coupling; we use it as a parameter to
emphasize the key role of the u6 process. The second
parameter ζ models the momentum dependence of the
screened Coulomb interaction. The low energy scattering
processes fall into two classes: small and large (∼M)
momentum transfer. The latter are reduced by the factor

ζ. For example, we have uð0Þ1 ¼ uð0ÞðNΓ
TiN

M
Ti þ NΓ

SeN
M
SeÞ

and uð0Þ2 ¼ uð0ÞðNΓ
TiN

M
Ti þ NΓ

SeN
M
SeÞ=ζ. For strong screen-

ing, we expect local interactions and momentum-
independent interactions, giving ζ ∼ 1. For weak
screening, ζ > 1.
Figure 4 shows the fate of RG flow as a function of these

two parameters. The crucial role of hexagonal symmetry
can be seen by examining the line u06 ¼ 0. When the bare
value of u6 is zero, RG flow cannot generate a finite u6
value [see Eq. (2)]. Without u6 (along the u06 ¼ 0 line), we
do not approach the CDW fixed point or the chiral SC fixed
point. To estimate the “microscopic” value of u06, we could
use the same reasoning as with the other bare parameters to

obtain ubare6 ðζÞ¼fðNΓ
SeÞ1=2ðNM

SeÞ3=2þðNΓ
TiÞ1=2ðNM

TiÞ3=2g=ζ.
As u6 involves large momentum transfer, it is scaled down
by ζ. This choice of u6 places us in the basins of CDWand
sþ− fixed points. However, for some ζ values, the micro-
scopic parameters lie very close to the border of the chiral
SC basin. Taken together, our results suggest that 2D TiSe2
may host CDW order, chiral superconductivity, or sþ−
pairing.
Discussion.—We analyzed the competing phases in two-

dimensional hexagonal structures which allow special
umklapp processes. In systems with Coulomb repulsion,
these processes give rise to CDW order instead of SDW.
This CDW state competes with chiral and sþ− super-
conductivity and not sþþ superconductivity expected from
a phonon mechanism. We focused on two-dimensional
TiSe2 with two small hole pockets around Γ and electron
pockets around theM points. This physics could also appear
in 2D TiS2 and other materials with similar band structure.
Our results may also be relevant for layered 3D TiSe2,
which has an additional spherical hole pocket around the
Γ point—our RG analysis is still valid at high energies
when the bands are 2D-like. While nodeless super-
conductivity has been seen in 3D TiSe2 [27,28], our results
call for a more detailed examination of the nature of
superconductivity, particularly in exfoliated layers with
nanoscopic thicknesses. Earlier works have attempted to
explain CDW ordering in 3D TiSe2 invoking excitons [43],
the band Jahn-Teller effect [44], and orbital ordering [45];
our RG analysis may provide a unified explanation for
CDW and SC orders.
Our results for TiSe2 should be compared with the

pnictides wherein Coulomb interactions lead to sþ− SC
order which competes with SDW order. The different
behavior of TiSe2 ultimately stems from u6, the umklapp
process allowed by the geometry of the M pockets. For
CDW to win over SDW order, we require a negative value
of u2 at the fixed point, whereas the bare Coulombic value
of u2 is positive. A nonzero u6 plays a key role here by
reducing the value of u2 under RG flow [see Eq. (2)] to
negative values, similar to the role of interchain coupling in
coupled 1D chains [46].
The proposed chiral SC order has many interesting

implications. Previous studies have highlighted the pos-
sibility of fractional vortices connected by domain walls
[47]. If the central pocket is indeed decoupled as shown in
Fig. 1, this pocket may undergo pairing with a different
transition temperature. Alternatively, higher order cou-
plings may kick in and induce chiral order in the
central pocket. This possibility is favored by ab initio
calculations: eachM pocket is dominated by a single Ti t2g
orbital while the central pocket shows a strong angular
dependence in t2g orbital character. If the central pocket
were to inherit pairing by a proximity effect driven by local
orbital-centred interactions, we may obtain dx2−y2 þ idxy
pairing.

FIG. 4 (color online). The basins of the three fixed points.

The bare vertices are uð0Þ1 =ζ ¼ uð0Þ2 ¼ uð0Þ3 ¼ 0.82uð0Þ=ζ,
uð0Þ4 ¼ 1.85uð0Þ, uð0Þ5 =ζ ¼ uð0Þ7 =ζ ¼ uð0Þ8 ¼ uð0Þ9 ¼ 0.6uð0Þ=ζ. The
precise location of basin boundaries weakly depends on uð0Þ.
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