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We observe a dependence of the damping of a confined mode of precessing ferromagnetic magnetization
on the size of the mode. The micron-scale mode is created within an extended, unpatterned yttrium iron
garnet film by means of the intense local dipolar field of a micromagnetic tip. We find that the damping of
the confined mode scales like the surface-to-volume ratio of the mode, indicating an interfacial damping
effect (similar to spin pumping) due to the transfer of angular momentum from the confined mode to the
spin sink of ferromagnetic material in the surrounding film. Though unexpected for insulating systems, the
measured intralayer spin-mixing conductance g↑↓ ¼ 5.3 × 1019 m−2 demonstrates efficient intralayer
angular momentum transfer.
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Spin pumping driven by ferromagnetic resonance (FMR)
is a powerful and well-established technique for generating
pure spin currents in magnetic multilayers [1–4].
Understanding the mechanism that couples precessing
magnetization to spin transport is an important step in
utilizing this phenomenon. In addition, probing the effect
of spin pumping on the damping of individual nanostruc-
tures is vital for the development of practical spintronic
devices, such as spin-torque oscillators [5,6]. Conventional
FMR studies at these submicron length scales become
difficult due to the confounding effects arising from inter-
faces in multilayer materials and from sensitivity limitations
in detecting lateral transport in single component systems at
these length scales. Recent studies have shown that indi-
vidual nanoscale elements exhibit size-dependent effects,
such as nonlocal damping from edge modes [7] and wave-
vector-dependent damping in perpendicular standing
spin-wave modes [8]. These experiments have revealed
the effect of damping due to intralayer spin pumping, which
is the transfer of angular momentum in systems with
spatially inhomogeneous dynamic magnetization.
A primary challenge in thesemeasurements is distinguish-

ing intralayer spin pumping from other mechanisms that
cause variations in linewidth from sample to sample, such as
surface and edge damage [9,10]. In this paper we measure
size-dependent angular momentum transport across a clean
interface without growth-defined defects or lithography-
induced edge damage. This is achieved noninvasively in a
single sample by confining the magnetization precession
to a mode within an area defined by the controllable dipolar
field from a nearbymicron-sizedmagnetic particle [11]. This
enables a unique investigation of changes in relaxation due to
angularmomentum transfer across the field-defined interface
between precessing magnetization within a mode to the spin
sink provided by the surrounding quiescent material.

We investigate the size dependence of interfacial damp-
ing using the technique of localized mode ferromagnetic
resonance force microscopy (FMRFM) [11]. By adjusting
the magnitude of the dipolar field from the probe we can
control the confinement radius. Localized modes have
previously been observed in permalloy when the probe
field is out of plane [11], in plane [12], and at intermediate
angles [13]. The azimuthal symmetry of the out-of-plane
geometry permits simple numerical analysis based on
cylindrically symmetric Bessel function modes with a
well-defined localization radius [11], similar to those seen
in perpendicularly magnetized dots [14]. In addition, this
geometry eliminates the effect of eigenmode splitting,
which can cause additional broadening [15].
We demonstrate the control of confinement radius by the

observation of discrete modes in an FMRFM experiment in
the out-of-planegeometry in an unpatterned epitaxial yttrium
iron garnet (YIG) film of thickness 25 nm grown by off-axis
sputtering [16] on a (111)-oriented Gd3Ga5O12 substrate.
The probe field is provided by a high coercivity Sm1Co5
particle that is milled to 1.75 μm after being mounted on
an uncoated, diamond atomic force microscope cantilever.
The magnetic moment and coercivity of the particle are
measured by cantilever magnetometry to be 3.9 × 10−9 emu
and 10 kOe, respectively. When the applied field is anti-
parallel to the tip moment, the tip creates a confining field
well in the sample that localizes discrete magnetization
precessionmodes immediately beneath it [11,17], analogous
to the discrete modes in a quantumwell [18]. Themicrowave
frequency magnetic field that excites the precession is
provided by placing the sample near a short in a microstrip
transmission line. A force-detected ferromagnetic resonance
spectrum is obtained by modulating the amplitude of the
microwaves at the cantilever frequency (≈18 kHz) and
measuring the change in cantilever amplitude as a function
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of swept external magnetic field. Measurements were made
over a range of microwave frequencies: 2–6.5 GHz.
Figure 1 shows the evolution of the FMRFM spectra as a

function of tip-sample separation obtained at a particular
microwave frequency of 4 GHz. At large probe-sample
separation we observe a peak at the expected resonance
field for the uniform mode in the out-of-plane geometry.
As expected, several discrete peaks emerge and shift toward
a higher applied field as the probe-sample separation
decreases, thus increasing the (negative) probe field at the
sample, while the uniform mode stays at a constant reso-
nance field.
The resonance frequency ω of a confined mode for wave

vectors kt ≪ 1 is given by [11]

ω

γ
¼ Hext − 4πMs þ hHpi þ πMsktþ 4πMsaexk2; ð1Þ

where γ¼2π×2.8MHz=Oe is the gyromagnetic ratio, Hext
is the external applied magnetic field, 4πMs¼1608Oe
is the saturation magnetization, aex ¼ 3.6 × 10−12 cm2 is
the exchange constant of the material, k is the wave vector
of the mode, t is the thickness of the film, and hHpi is the
spatial average of the dipole field from the probe magnet
weighted by the transverse magnetization of the mode m

hHpi ¼
R
S HpðrÞm2ðrÞd2r
R
S m

2ðrÞd2r : ð2Þ

The film is sufficiently thin relative to the size of the probe
particle that the dipole field is constant across the thickness
of the film, and so the integration is performed over the
sample surface S. Both the averaged probe field hHpi and
the wave vector k are functions of the mode shape and mode
radius R, so the frequency is obtained by numerical
minimization with variation of radius [11]. Because of
cylindrical symmetry the magnetization profile of the mode
can be described by a zeroth order Bessel function
m ¼ J0ðkrÞ, with boundary conditions that define discrete
wave vectors kn ¼ χn=Rwhere χn are the zeros of the Bessel
function J0ðχnÞ ¼ 0. Theminimization of frequency at fixed
field is equivalent to the maximization of field at fixed
frequency. Hence, the deeper field well shifts the modes to
higher field when the microwave frequency is fixed, as seen
in Fig. 1. This modeling procedure provides both the
resonance field and the radius of the mode, and these are
given in Fig. 2. We see that the resonance fields of the
experimental peaks are well described by the model, con-
firming the accuracy of the calculated mode radius.
To measure damping of a confined mode we obtain

FMRFM spectra for a fixed mode radius R at multiple
frequencies, one example of which can be seen in Fig. 3.
The field shift of the localized modes, relative to the
uniform mode Huniform ¼ ðω=γÞ þ 4πMs is constant for a
fixed wave vector k ¼ kn ¼ χn=R, independent of fre-
quency ω, as predicted by Eq. (1).
By fitting a Lorentzian line shape to the n ¼ 1 and n ¼ 2

peaks, we obtain the full-width-at-half-maximum linewidth
of the localized modes and plot this as a function of
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FIG. 1 (color online). Localized mode FMRFM spectra for thin
film YIG at several probe-sample separations. The dashed line
indicates the position of the uniform mode peak that does not shift
with probe-sample separation. As probe-sample separation is
reduced the localized modes shift to a higher field relative to the
uniform mode peak. Inset: transverse magnetization of the first
two spin-wave modes confined by the magnetic field well of the
probe magnet. The energy of the confined modes is dictated by
the depth of the field well.
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FIG. 2 (color online). Resonance fields of the first four
localized modes as a function of probe-sample separation at
4 GHz. Filled markers indicate experimental peaks and solid lines
indicate expected resonance field obtained numerically. Inset:
radius of the first three localized modes obtained from the
numerical minimization procedure described in the text.
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microwave frequency to separate intrinsic and extrinsic
linewidth broadening mechanisms [19]. Following from the
Landau-Lifshitz-Gilbert equation, the linewidth ΔH is
given by

ΔH ¼ ΔH0 þ
2αω

γ
; ð3Þ

where the slope and intercept of the frequency-dependent
linewidth measure, respectively, the Gilbert damping
parameter α and inhomogeneous broadening ΔH0 due to
spatial variation of magnetic properties. We measure this
frequency dependence at several probe-sample separations
corresponding to several mode radii R.
The key result of our study is the observation of enhanced

damping that is unambiguously dependent on the radius of
the mode, as seen from the change in slope of the first
localizedmode linewidth with mode radius as seen in Fig. 4.
The Gilbert damping parameter α, for both the first and
second localized modes, shows a surprising linear behavior
when plotted against R−1, the reciprocal of the mode radius,
as seen in Fig. 5. An enhanced damping is reminiscent of
spin pumping observedwhen a ferromagnetic layer is placed
in contact with a normal metal layer [1]. In this bilayer
geometry the damping enhancement αsp scales inversely
with thickness t of the FM film, which is equal to the ratio of
the area of the ferromagnet-metal interface to the volume
of the ferromagnet, and is given by [20]

αsp ¼
γℏg↑↓
4πMs

1

t
; ð4Þ

where ℏ is the reduced Planck constant and g↑↓ is the spin-
mixing conductance parameter that describes the efficiency

of spin pumping. By analogy to this interfacial damping due
to spin pumping we suggest the possibility of an interfacial
damping mechanism for confined modes that scales with
the surface-to-volume ratio of the mode, where the volume
of the on-resonant disklike mode is πR2t and relaxation to
the surrounding material, which is off resonance, occurs
through the curved surface 2πRt around the edge of the disc.
Hence, the enhanced damping of a confined mode with
radius R is

αsp ¼
γℏg↑↓
4πMs

2

R
: ð5Þ

From Eq. (5) and the linear fit (solid black line) to the
enhanced damping versus mode the reciprocal of the mode
radius, as shown in Fig. 5, we obtain g↑↓ ¼ ð5.3� 0.2Þ ×
1019 m−2 for this system.
It is interesting and somewhat remarkable that we

observe angular momentum transport in this insulating
system and that its efficiency, characterized by g↑↓, is larger
than the spin-mixing conductance measured in YIG-metal
bilayers [16,22,23]. We suggest that g↑↓ measured in this
study is an intralayer spin-mixing conductance that
describes a generalization of spin pumping as the transport
of energy and angular momentum from an on-resonance
spin source to an off-resonance spin sink, even in the
absence of both a material interface [7] and conduction
electrons [24,25]. We describe this effect as YIG-YIG
intralayer spin pumping: the energy and angular momen-
tum from the precessing confined mode can be absorbed by
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FIG. 3 (color online). FMRFM spectra at multiple microwave
frequencies at a fixed probe-sample separation of 3700 nm,
equivalent to a mode radius R ¼ 1860 nm. Spectra are offset for
clarity and the external field H is plotted relative to the uniform
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the surrounding ferromagnetic material of the unpatterned
film, as depicted in the inset of Fig. 5. The relatively large
value of g↑↓ ¼ ð5.3� 0.2Þ × 1019 m−2 we obtain for YIG-
YIG can be compared to g↑↓ ¼ 3.4 × 1019 m−2 previously
measured for YIG-Pt [26]. This enhancement may arise
because the interface, rather than involving a material
discontinuity, is defined by a magnetic field that occurs
in a uniform, essentially defect-free film leading to a strong
“interfacial” coupling characterized by the YIG-YIG
exchange interaction itself. In addition, it might be unex-
pected for the confined mode to relax via the surrounding
material where the lowest energy state, which is the
uniform mode, is well above the energy of the confined
mode inside the well. However, previous experiments by
Heinrich et al. [4,20] have shown that ferromagnets do act
as good spin sinks when the precession frequency of
the spin-current source is not at a resonance frequency
of the spin-sink ferromagnet.
We consider the possible role of transverse spin diffusion

[21] used previously to describe enhanced damping due to
the interaction between itinerant electrons and spatially
inhomogeneous dynamic magnetization [7,8]. While this
theory applies only to ferromagnetic metals, we feel that

it is illuminating to compare our observations with this
previously established formalism for intralayer spin trans-
port. These previous results argue for a quadratic wave-
vector dependence to the enhanced damping:

αsp ¼
σTγ

Ms
k2; ð6Þ

where σT is the transverse spin conductivity and for our
case the wave vector k ¼ χn=R is given by the radius of the
mode R and the Bessel zeros χ1 ¼ 2.405, χ2 ¼ 5.520.
We find, however, that the damping enhancement in our
system (involving insulator-insulator spin transport) is
independent of wave vector, as clearly demonstrated by
the equivalent behavior of the first and second localized
mode, shown as the red solid circles and blue solid
squares, respectively, in Fig. 5. To quantify the comparison
we allow the spin conductivity to be a free parameter and
fit to the first localized mode linewidth; this fit to the
wave-vector-dependent intralayer spin-pumping theory
is shown as the red dashed line in Fig. 5. We find
that the spin conductivity that describes this fit, σT ¼
1.5 × 10−22 kg m=s, is 2 orders of magnitude larger than
that measured in a metallic ferromagnet [7]. In addition,
using the same spin conductivity to estimate the linewidth
of the second localized mode (blue dashed line) results in a
prediction that does not accurately describe the measured
second mode linewidth (blue solid squares), while con-
fined-mode intralayer spin pumping that scales as the
surface-volume ratio of the mode (black solid line)
described by Eq. (5) accurately describes both sets of data.
Clearly, the phenomenon we observe in a ferromagnetic
insulator is qualitatively different than that observed in a
ferromagnetic metal [7,8]. More specifically, our observed
effect is described by a surface-volume intralayer relaxation
specific to spatially confined precession within an extended
film, previously predicted for nanocontact spin-torque
oscillators [27].
Other mechanisms for linewidth broadening are ruled

out by analysis of the phenomenology of our result. The
dipolar field from the micromagnetic tip is a potential
source of linewidth broadening, as it is produces an
inhomogneous field in the sample of several hundred gauss
that would dominate inhomogeneous spectral broadening
in a paramagnetic sample [28,29]. Inhomogeneous broad-
ening from the tip can be ruled out as the source of
increased damping in this study for two reasons. First, any
inhomogeneous broadening would be frequency indepen-
dent, and hence would lead to a change in the intercept of
the frequency dependence of linewidth shown in Fig. 4,
while the change in slope alone is a clear indication of a
Gilbert damping enhancement. Second, the ferromagnetic
resonance excitations of a ferromagnet are eigenmodes
[11,28], in which the inhomogeneous field from the tip is
canceled by the dynamic field from the precession. This
allows the effective field to be equal at every position inside
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the mode, and hence it can be described as an eigenmode
with a single well-defined eigenfrequency. While mode
splitting can contribute to the measured effective damping
[15], the perpendicular geometry used in our study elim-
inates this possibility. Other well-established mechanisms
for size- or wave-vector-dependent relaxation can also be
eliminated due to their insufficient magnitude and differing
phenomenology; 3-magnon confluence [30,31] manifests
as a linewidth broadening that is linear in k but independent
of frequency, while 4-magnon scattering [32] scales as k2.
To conclude, we observe robust intralayer spin pumping

within an insulating ferromagnet, which manifests as
enhanced damping of micrometer-scale confined spin-wave
modes. This result has consequences for devices that induce
spin precession in confined regions, such as spin-torque
oscillators in the nanocontact geometry [33,34]. In addition,
our study highlights the power of localized mode FMRFM
for illuminating local spin dynamics and, in particular, for
spectroscopic studies of the impact of mode relaxation
across a controllable, field-defined interface.
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