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An energy-principle-based dispersion relation is derived for the resistive wall mode, which incorporates
both the drift kinetic resonance between the mode and energetic particles and the resistive layer physics.
The equivalence between the energy-principle approach and the resistive layer matching approach is first
demonstrated for the resistive plasma resistive wall mode. As a key new result, it is found that the resistive
wall mode, coupled to the favorable average curvature stabilization inside the resistive layer (as well as the
toroidal plasma flow), can be substantially more stable than that predicted by drift kinetic theory with fast
ion stabilization, but with the ideal fluid assumption. Since the layer stabilization becomes stronger with
decreasing plasma resistivity, this regime is favorable for reactor scale, high-temperature fusion devices.
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In order to maximize the benefit of the concept of the
advanced tokamak—which aims at high pressure, steady
state plasma operation—the stability, or stabilization, of the
resistive wall mode (RWM) is a critical issue. The absence
of unstable, low n (n is the toroidal mode number) RWMs
provides a viable way of achieving high normalized β,
which in turn ensures both high fusion gain and high
noninductive, bootstrap current fraction in a tokamak
plasma. These are the key motivations for understanding,
both in experiments and in theory, the physics and control
of the RWM.
Because the mode originates from the ideal external kink

instability, so far most of the theory and modeling efforts
have adopted the ideal fluid assumption (i.e., with vanish-
ing plasma resistivity), with few exceptions [1–3]. The
resistive plasma resistive wall mode theory was developed,
in the aforementioned work, in the pure fluid approxima-
tion. On the other hand, recent theory [4–9] and experi-
ments [10–12] seem to suggest a strong damping of the
RWM by drift kinetic resonant effects, with both thermal
[4,8,13] and energetic particles [7,9,14]. The kinetic theory,
often combined with the fluid description to form a hybrid
formulation, so far has been to assume an ideal plasma.
In this Letter, we examine the combined effects of the

(local) resistive layer physics and the (global) drift kinetic
resonance damping, of fast ions, on the stability of the
RWM. To accomplish this, we first derive an extended
RWM dispersion relation, based on the energy conserva-
tion. We then numerically solve the dispersion relation,
which is highly nonlinear with respect to the mode’s
eigenvalue, on an example of a cylindrical plasma.
Certain approximations have to be adopted following this
approach. The most severe one is probably the inconsis-
tency of the evaluation of the perturbed drift kinetic energy

perturbation from the trapped fast ions, with the assumption
of the cylindrical geometry. Nevertheless, we believe that
this does not affect the qualitative physics of the drift
kinetic damping, as confirmed by full toroidal computa-
tions [7,14,15]. Moreover, the resistive layer contribution,
as we shall show, is rigorously evaluated in our example.
Our approach follows that for the resistive internal kink

mode devised by Biglari and Chen [16]. We extend the
well-known dispersion for the kinetic RWM by adding the
resistive layer energy dissipation term δWRL,

~γ2δK þ δWp þ
δW∞

v þ γτ�wδWb
v

1þ γτ�w
þ δWk þ δWRL ¼ 0; ð1Þ

where ~γ ≡ ðγ þ inω0ÞτA is the Doppler-shifted (complex)
eigenvalue of the mode, with ω0 being the toroidal rotation
frequency of the plasma (which is assumed to be uniform
here). τA is the Alfvén time to be defined later. δK is the
plasma inertia. δWp is the potential energy perturbation
inside the plasma, while δW∞

v and δWb
v represent the

vacuum energy perturbation without and with an ideal
conducting wall, respectively. The whole third term in the
above equation represents the vacuum energy including the
eddy-current-induced dissipation in a resistive wall, with
the effective wall time of τ�w (to be defined later). The fourth
and fifth terms are the energy dissipation terms associated
with the drift kinetic resonances and the resistive layer,
respectively.
For a nominal RWM, the plasma inertia is often of

secondary importance (the plasma inertia becomes impor-
tant when, for instance, the plasma is close to the so-called
ideal wall β limit or, equivalently, to the marginal ideal wall
position). Neglecting the first term in Eq. (1), we can write
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γτ�w ¼ −
δW∞ þ δWk þ δWRL

δWb þ δWk þ δWRL
; ð2Þ

where δW∞ ≡ δWp þ δW∞
v and δWb ≡ δWp þ δWb

v.
We shall show later on that the above expression (2) is

not a heuristic extension of the known RWM dispersion
relation [4]. Neglecting the drift kinetic term, Eq. (2) can be
shown to be equivalent to the matching condition, as used
in the previous RWM study within the resistive fluid theory
[1–3], between the inner and outer solutions near the
mode’s rational surface. Before proceeding to the proof,
we first note that the energy dissipation associated with the
resistive layer is proportional to the inner layer tearing
index Δ0

int [17],

δWRL ¼ CΔ0
int; ð3Þ

with the coefficient C being a positive number. As an
example, the above relation can be easily derived for a zero
β plasma, by solving the coupled layer equations, for the
perturbed poloidal magnetic flux ψ1 and the plasma radial
displacement ξ [17]:

ψ1ðxÞ þ ŝxξðxÞn=m ¼ r2sψ1
00ðxÞ=ðγτRÞ; ð4Þ

ðγτAÞ2ξ00ðxÞ ¼ ŝxψ1
00ðxÞnm=r2s ; ð5Þ

where x≡ r − rs, with r being the minor radius and rs
denoting the location of the rational surface, ŝ≡ rq0=q
being the magnetic shear calculated at the rational surface,
andm and n being the poloidal and toroidal mode numbers,
respectively. τA ≡ R

ffiffiffiffiffiffiffi

μ0ρ
p

=Bz is the toroidal Alfvév
time and τR ≡ μ0r2s=η the resistive decay time of the
plasma. Following Ref. [16], δWRL ∝

Rþ∞
−∞ ½ðγτAÞ2jξ0j2−

ŝnmxξ�ψ1
00=rs�dx, which can be shown to be proportional

to Δ0
int ¼ 2π½Γð3=4Þ=Γð1=4Þ�ðnŝÞ−1=2S3=4ðγτAÞ5=4, where

S≡ τR=τA is the Lundquist number. We point out that
the linear scaling between δWRL and Δ0

int is valid for the
m > 1 mode (our case). For the m ¼ 1 mode (the internal
kink mode), δWRL is inversely proportional to Δ0

int, as
shown in Ref. [16].
Now we consider a cylindrical plasma described in

Ref. [18] (with a step function for the plasma current
density and a constant pressure). For this equilibrium, all of
the perturbed fluid energies from Eq. (2) can be analytically
calculated and can be related to the logarithmic derivative
jumps of the perturbed flux function ψ1:

δW∞ ¼ −CΔ0
nw; ð6Þ

δWb ¼ −CΔ0
iw; ð7Þ

δWRL ¼ CΔ0
int; ð8Þ

where C ¼ ½ðm − nq0Þ2=ðq20τ2AÞ�ðrs=mÞ and q0 is the on-
axis safety factor. Δ0

iw and Δ0
nw are again defined at the

rational surface, for cases with and without an ideal wall,
respectively.
On the other hand, the matching condition leads to [18]

Δ0
int ¼ Δ0

ext ≡ δ0 þ γτwδ∞
ψ0 þ γτwψ∞

; ð9Þ

where δ0 ¼ ψ0Δ0
nw; δ∞ ¼ ψ∞Δ0

iw;ψ∞ ¼ ψ0Cw; Cw≡
ð1 − b−2mÞ=ð2mÞ; τ�w ¼ τwCw, and b is the minor radius
of the wall location normalized by the plasma minor radius.
The physical significance of δ0; δ∞;ψ0;ψ∞ is explained in
Ref. [18]. It is straightforward to show that the above
matching condition (9) is equivalent to the energy-based
dispersion relation (2), in the absence of the drift kinetic
term δWk.
The matching condition (9) was also used in an earlier

work [3] to study the resistive plasma RWM stability with
the inclusion of the favorable curvature effect [19]. The
limitation of this approach, compared to the energy-based
approach (2), is the difficulty to include the drift kinetic
effects. Therefore, in further study, we shall follow the
dispersion relation (2) in order to study the combined
effects of the drift kinetic damping (from fast ions) and the
plasma resistive damping, for cases without and with the
favorable curvature term. To do this, we use the drift kinetic
energy term δWk derived in Refs. [9,20]. Note that this term
is derived for an equilibrium with constant safety factor q.
Therefore, our further quantitative results are valid only for
cases where the resistive layer is located in a narrow region
near the plasma boundary.
Subject to certain normalization, as in Refs. [9,20], for

the above specified cylindrical equilibrium, all of the
perturbed potential energies from Eq. (2) can be analyti-
cally calculated:

δW∞ ¼ 4π

m
ðm − nq0Þ2

q20

�

1 −
1

m − nq0

�

; ð10Þ

δWb ¼ 4π

m
ðm − nq0Þ2

q20

�

1

1 − b−2m
−

1

m − nq0

�

; ð11Þ

δWRLðγÞ ¼
4π

m
ðm − nq0Þ2

q20

rs
2m

Δ0
intðγÞ; ð12Þ

δWkðγÞ ¼ 12π

�

1 −
α0B0

2

�

2 βhR
Ka

×

�

2

7
ðAK − BKÞΩ ln

�

1 −
1

Ω

�

−
2

7

�
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5
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�

Ω
�
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�

1

5Ω
þ 1
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þ 1
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�

−
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Ω
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1 −
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p
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þM; ð13Þ

PRL 113, 175001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

24 OCTOBER 2014

175001-2



where Ω≡ i~γ=ðωdsτAÞ, with ωds being the toroidal pre-
cession frequency of trapped fast ions at the birth energy.
The coefficients AK; BK, and M are taken from Ref. [20].
The inner layer tearing index, including the favorable
curvature effect, can be written as

Δ0
intðγÞ ¼ AR ~γ

5=4½1 − ðπ=4ÞDRBR ~γ
−3=2�; ð14Þ

with the coefficients AR ≡ 2π½Γð3=4Þ=Γð1=4Þ�ðnŝÞ−1=2×
ð1þ 2q2Þ1=4S3=4 and BR ≡ ðnŝÞð1þ 2q2Þ−1=2S−1=2 evalu-
ated at the rational surface.DR is defined in Ref. [19] and is
normally negative for tokamak plasmas.
The dispersion relation (2) is strongly nonlinear with

respect to the mode’s eigenvalue γ. We now proceed to
numerically solve this dispersion relation for our test
equilibrium. We choose a case with q0 ¼ 1.42 and consider
the n ¼ 1; m ¼ 2 RWM. Before showing the numerical
results, we note an interesting feature of Eq. (2) with
respect to the resistive layer term. As the plasma resistivity
approaches zero (the Lundquist number S approaches
infinity), the dispersion relation does not recover the ideal
fluid result. In fact, the ideal fluid case is recovered at the
vanishing Lundquist number. This is associated with the
fact that the ideal plasma theory for the RWM assumes no
jump of the ψ1 through the rational surface (the ideal kink
solution). Physically, the ideal assumption does not allow
the magnetic reconnection to occur, which therefore leads
to a qualitatively different solution compared to the case
where the latter is allowed, even at a very small plasma
resistivity. On the other hand, the width of the resistive
layer increases with plasma resistivity. In the limit of the
vanishing S value, the width of the tearing layer is so large
that the RWM again behaves like a kink mode. This is the
physics reason why the ideal fluid dispersion relation is
recovered only at the vanishing Lundquist number.
The aforementioned behavior is clearly seen in the

numerical results shown in Fig. 1. We observe a strong
reduction of the growth rate of the mode by the resistive
layer energy dissipation, compared to the ideal fluid theory
prediction. On the other hand, within the resistive model,
the mode’s growth rate increases with the plasma resistivity.
In fact, it can be shown analytically that this increase is
monotonic without the favorable curvature term (DR ¼ 0).
The inclusion of the favorable curvature effect (DR < 0)

further reduces the mode’s growth rate. Interestingly, at a
sufficiently large value of −DR, the growth rate of the
RWM becomes complex even in a static plasma, as shown
in Fig. 2. This is similar to the linear tearing mode, which
can become a rotating mode even in a static plasma, when
DR is sufficiently negative.
Inclusion of the drift kinetic effect, in our case from the

precessional resonance damping of fast ions, further
decreases the growth or damping rate of the RWM. One
example is shown in Fig. 3, where we fix the wall radius at
1.2a as well as the Glasser term with DR ¼ −0.001, while
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FIG. 1 (color online). Growth rates (normalized by the Alfvén
frequency) of the RWM versus the wall minor radius, predicted
by the ideal fluid (η ¼ 0) and the resistive fluid (S ¼ 106 and
S ¼ 107) theory. A static plasma (ω0 ¼ 0) is assumed. Neither the
drift kinetic effect nor the Glasser effect (DR ¼ 0) is included.
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FIG. 2 (color online). The (a) growth rate and (b) real frequency
(normalized by the Alfvén frequency) of the RWM versus DR,
predicted by the resistive fluid (S ¼ 106 and S ¼ 107) theory. A
static plasma (ω0 ¼ 0) is assumed. No drift kinetic effect is
included.

PRL 113, 175001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

24 OCTOBER 2014

175001-3



varying the two key parameters representing the drift
kinetic effect from the energy particles or EPs (the
normalized EP pressure β�) and the resistive layer effect
(the Lundquist number S), respectively. Furthermore, we
assume a relatively small plasma toroidal rotation fre-
quency of ω0 ¼ −0.1ωds ¼ −4.46 × 10−4ωA. Increasing
the flow speed tends to enhance the drift kinetic damping
from the EPs and hence further stabilizes the mode.
Interestingly, the drift kinetic contribution from EPs and
the resistive layer contribution act synergistically on the
mode damping by increasing both the EP pressure fraction
and the Lundquist number, as shown in Fig. 3(a). We find a
critical curve in the β�-S plane, above which the RWM
becomes stable as a result of this synergy effect. The real
frequency of the mode, shown in Fig. 3(b), is predomi-
nantly introduced by the resistive layer effect (note that the
mode frequency scales mainly with S but is almost
independent of β�). In fact, a comparison of the amplitude
of δWk and δWRL, shown in Fig. 4, reveals that the resistive
layer can give an order of magnitude larger contribution to
the perturbed energy. Note that these energy components
are self-consistently evaluated, using the eigenvalue of the

mode as the solution of the RWM dispersion relation.
These energy components are also subject to the same
normalization (the perturbed plasma inertial energy). The
resistivity-induced strong damping of the RWM seems to
be a systematic observation from our cylindrical example.
In conclusion, the resistive fluid theory provides a more

optimistic prediction of the RWM stability. The additional
stabilization from the energy dissipation associated with the
resistive layer, which is further enhanced by the favorable
curvature effect, can be significant, and in fact can be even
stronger than that from the drift kinetic damping by fast
ions. It is important to note that the two damping effects
work in a synergistic manner. Since the resistive damping is
more effective with the reduction of the plasma resistivity,
we may expect a strong damping of the RWM in the reactor
scale, high-temperature plasmas.
Our present model includes neither all of the kinetic

physics nor the full geometrical effects. In particular, we do
not consider the drift kinetic damping from thermal
particles, which can be strong at slow plasma flow [4,5].
We have assumed a simple cylindrical geometry to enable
analytic treatment. Advanced numerical study, using resis-
tive fluid-kinetic hybrid codes such as MARS-K [13], needs
to be carried out for realistic geometry.
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FIG. 3 (color online). The (a) growth rate and (b) real frequency
(normalized by the Alfvén frequency) of the RWM with varying
energetic particle pressure β� ≡ βh=βth and the Lundquist num-
ber S. A finite β plasma model is assumed with the presence of the
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