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We consider classical models of the kicked rotor type, with piecewise linear kicking potentials designed
so that momentum changes only by multiples of a given constant. Their dynamics display quasilocalization
of momentum, or quadratic growth of energy, depending on the arithmetic nature of the constant. Such
purely classical features mimic paradigmatic features of the quantum kicked rotor, notably dynamical
localization in momentum, or quantum resonances. We present a heuristic explanation, based on a classical
phase space generalization of a well-known argument, that maps the quantum kicked rotor on a tight-
binding model with disorder. Such results suggest reconsideration of generally accepted views that
dynamical localization and quantum resonances are a pure result of quantum coherence.
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Dynamical localization in the quantum kicked rotor
(QKR) is a prototypical example of how quantization
can drastically modify the qualitative features of classical
chaotic motion [1–3]. It is assimilated to the Anderson
localization in disordered solids [3,4], and, like the latter,
it is considered to be an effect of quantum interference.
Dynamical localization is also expected with kicked
particles moving in a line. Experimental observations on
kicked cold atoms [5] support such expectations, which are
all the more natural, because quantum kicked rotors and
quantum kicked particles are closely connected by Bloch
theory [6]: spatial periodicity enforces conservation of
quasimomentum, and the dynamics at fixed quasimomen-
tum are those of a generalized QKR [7]. Thus a crucial
difference between the quantum and the classical dynamics
of kicked particles is immediately apparent: notably, the
former have a constant of the motion, while the latter have
none. In this Letter, we submit that exactly this difference
plays a major role in the dynamical localization effect.
We base our results on a family of classical dynamical
systems, which are subject to a purely classical conserva-
tion law for quasimomentum. These are models
of the kicked rotor (KR) type, where the kicking potentials
are a piecewise, continuous, 2π-periodic, function so that
kicks can change momentum only by integer multiples of
a constant η > 0. They will be termed generalized triangle
maps (GTMs) because they include as a particular example
the triangle map [8,9], that despite its formal simplicity still
challenges exact analysis.
In this connection, we’d like to recall a seminal paper [10]

in which the question was raised, whether the quantum
inhibition of classical chaotic effects could be somehow
explained by a “discreteness of quantum phase space.”

Following this idea, the classical kicked rotor was artificially
discretized, and a limitation of the chaotic diffusion was
observed. Classical maps of the same kind have later been
derived in a different way in Ref. [11], and named “classical
models of quantum stochasticity.” These ad hoc discretized
models have been confirmed to reproduce some quantum
effects, like resonances, and limitations of chaotic diffusion.
Here we provide empirical and analytical evidence that

purely classical models described by GTMs, indeed offer
an intriguing imitation of the QKR. Our numerical results
show that for strongly irrational η=ð2πÞ, the KR diffusion
is replaced by localization, or by “quasilocalization,” i.e.,
very slow (power-logarithmic) transport in momentum
space. If averaged over quasimomenta, the quasilocalized
momentum distributions display a clean exponential shape.
For rational η=ð2πÞ, and quasimomentum commensurate
to 2π, quadratic growth of energy is observed, similar to
the QKR resonances [7].
Quasilocalization, instead of strict localization as in

QKR, is likely to be due to the absence of interference
in GTMs. Each kick changes the QKR state to a new state,
where jumps by different multiples of ℏ are coherently
superposed and interfere in ways that have no counterpart
in GTMs. Thus, in spite of general parallelism, differences
still exist between the GTM and the QKR dynamics, that
reflect the fundamental difference of classical and quantum
mechanics. That such differences leave room for classical
lookalikes of dynamical localization and resonances sug-
gests the reassessment of commonplace views, that the
latter effects are pure manifestations of quantum coherence.
Proper explanation of such numerical results demands a

purely classical analysis of the GTMs. An exact argument
to be reviewed later shows that GTM resonances have
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exactly the same origin as the QKR resonances, notably,
conservation of quasimomentum, together with translation
invariance (in momentum space). For quasilocalization, we
instead present a heuristic argument that, somewhat para-
doxically, is of a quantumorigin. It is based on a construction
due to Fishman, Grempel, and Prange (FGP) [3,4,12] that
maps the QKR on a 1D tight-binding model with pseudor-
andom disorder. We first reformulate that mapping in the
Weyl phase space representation of quantum mechanics.
The QKR is thereby turned into a 2D tight-binding model
with short-range hopping amplitudes and on-site potentials
that are periodic at resonances and pseudorandom for
sufficient incommensuration; in the latter case, exponential
localization is inferred. The two directions in the lattice
respectively correspond to momentum and to the harmonics
of position. Next we note that, thanks to the special features
of GTMs, the very same construction can be used to map
the unitary Perron-Frobenius (PF) operator of GTMs on a
2D lattice model. Pseudorandomness is the same as for the
QKR and couplings are still short range in the direction of
momentum; however, in the other direction they are now long
range. The same line of reasoning that so successfully works
in the QKR case, now leads us to predict localization in
momentum, and delocalization in the harmonics of position.
The GTMs we consider in this Letter are strictly classical

maps of the form

ptþ1 ¼ pt þ V 0ðθtÞ; θtþ1 ¼ θt þ ptþ1; ð1Þ

where VðθÞ is a continuous, 2π-periodic, piecewise
linear potential, such that the possible values of V 0ðθÞ
(“channels”) are a finite set of multiples of a constant η > 0,
and Vðθ þ πÞ ¼ −VðθÞ. In this Letter we choose VðθÞ as
illustrated in Fig (1). The map may also be read as a
dynamical system in the 2-torus. Except for the fact that
they are not chaotic, very little is known about such toral
maps, even in the case when V 0ðθÞ only takes two values

[9,13]. In that case, the map is similar to a “triangle map”
that describes the motion of a point mass in a right-
triangular billiard. Ergodicity of such billiards is a
long-standing issue, and in a recent paper [14] contrary
indications in that respect have been surmised, based on the
observation of a phenomenon there dubbed “exponential
localization of invariant measures.” It is easily proven
that the strict localization of the map in Eq. (1) would
forbid ergodicity of the corresponding toral map. A typical
phase portrait of a toral map [Eq. (1)] is shown in the
Supplemental Material [15].
At all times t, pt ¼ β þ ntη, with nt integer and where

the quantity β≡modðp; ηÞ is invariant under the map. The
dynamics are thus described by the map

ntþ1 ¼ nt þ V 0ðθtÞ=η; θtþ1 ¼ θt þ β þ ntþ1η: ð2Þ

In our numerical investigation we have used GTMs with
3,5,7 channels. Results are shown in Figs. 2 and 3 and

FIG. 1 (color online). The periodic potential VðθÞ (red solid
line) is linear in between any two subsequent points θn where
μ sinðθnÞ=η takes integer values (only those in ½0; π=2� are
shown). Its piecewise constant slope is V 0ðθÞ ¼ jðθÞη where
jðθÞ is the integer that rounds μ sinðθÞ=η toward 0; here
μ ¼ 3; η ¼ 1.2. In the limit of vanishing η, VðθÞ converges to
the standard kicked rotor potential (dashed curve).

FIG. 2 (color online). hp2i of GTMs averaged over an ensemble
of 106 initial points with θ0 randomly distributed in (0, 2π), versus
time t (upper plot) and versus logðtÞ2 (lower plot). Here η ¼ π=GM
(where GM is the golden mean), μ ¼ 3, and p0 ¼ η=2; η=

ffiffiffi
2

p
;

π=
ffiffiffi
3

p
. Blue lines represent averages over 5 × 106 initial points (θ0,

p0) randomlydistributed in ð0; 2πÞ × ð−η=2; η=2Þ. All curveswere
averaged over 100 iterations.
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crucially depend on the arithmetics of the triple η; β; π.
With η strongly incommensurate to π, and β a low-order
rational multiple of η, the average energy of ensembles
with randomly generated θ0 undergoes strict localization
(lowest curves). For β incommensurate to η, we observe
quasilocalization, i.e., slow, somewhat erratic growth of
energy not faster than power logarithmic, with an exponent
that appears to depend on the number of channels.
Additionally averaging over quasimomentum yields clean
indications in this sense (solid lines). The β-averaged,
quasilocalized momentum distributions show a remarkably
clean exponential decay away from a central tiny peak
(Fig. 4). The time scale for the onset of such exponential
distributions rapidly increases on decreasing η, as the initial
spreading in momentum approaches the classical diffusion
of the kicked rotor. At small η numerical analysis of the
quasilocalized regime becomes a prohibitive computational
task. When β, η, and π are mutually commensurate, ballistic
momentum growth is observed, at least for sufficiently

large values of μ=η. If η is identified with an effective
Planck constant, this behavior reproduces the quantum
resonances of the generalized QKR [7] (except for the
fact that the latter do not depend on the kicking strength).
This is explained as follows [11]. Let β and η be
commensurate: βs ¼ ηr≡ rsλ, with r; s coprime integers.
Then, at all times t, pt ¼ Ntλ and θt ¼ θ0 þMtλ with
Nt;Mt integers. Then Eq. (2) yields the following map for
the integers Nt and Mt,

Ntþ1 ¼ Nt þ ΦðMtÞ; Mtþ1 ¼ Mt þ Ntþ1; ð3Þ

where, for fixed θ0, ΦðMtÞ≡ λ−1V 0ðθ0 þMtλÞ is an
integer valued quasiperiodic function, with a finite number
of values. If in addition η (and hence λ) is commensurate
to 2π, λ ¼ 2πp=q with p; q coprime integers, then Φ is
periodic, and the map in Eq. (3) commutes with translations
of both variables by multiples of q. Therefore, it defines a
mapM of the discrete 2-torus Tq × Tq in itself, where Tq is
the set of congruence classes mod (q). As M is bijective
in a finite set, all its trajectories are periodic; so, for all
choices of θ0 and p0 which are consistent with the
given β, there are a period T and integers K;L so that
θmT ¼ θ0 þ Kmqλmodð2πÞ and pmT ¼ p0 þ Lmqλ for all
integers m. If the number of channels is sufficiently large,
some orbits have L > 0; along such orbits the momentum
pt increases, on the average, proportional to Lqλt=T.
Quadratic growth of the mean energy follows.
Next we show that a theoretical understanding about

the purely classical GTM can be obtained from quantum
localization theory. To this end we consider the PF operator
ÛGTM for the GTM dynamics. For given β, the phase
space of themap in Eq. (2) isΩ ¼ T × Z and ÛGTM unitarily
acts on square-summable functions Ψ ∈ L2ðΩÞ so that
ÛGTMΨðθt; ntÞ ¼ Ψðθt−1; nt−1Þ. To the unitary operator

ÛGTM we will associate a 2D lattice problem, implementing
the FGP construction that was used [4] to map the quantum
kicked rotor on a 1D lattice problem. Here we outline this
calculation, leaving details for the Supplemental Material
[15]. We first derive a phase-space version of the FGP
construction and to this end we exploit the Weyl correspon-
dence W, that maps Hilbert-Schmidt operators Â (e.g.,
states) in the Hilbert space of the QKR to the square-
summable function Ψ ¼ WðÂÞ on Ω, according to

Ψðθ; nÞ ¼ 1ffiffiffiffiffiffi
2π

p
X
l∈Z

heljÂjen−lie2l−nðθÞ ð4Þ

¼
Z

2π

0

dθ0hθ0jÂj2θ − θ0ienðθ − θ0Þ; ð5Þ

where elðθÞ ¼ ð2πÞ−1=2 expðilθÞ. As Â evolves into Û Â Û†

where Û is some unitary evolution operator, its Weyl
representative Ψ evolves into ÛΨ ¼ WðÛW−1ðΨÞÛ†Þ.
This defines the unitary propagator Û in L2ðΩÞ that

FIG. 3 (color online). Same as Fig. 2 (lower) but with μ ¼ 4

FIG. 4 (color online). Momentum distributions for ensembles
of 5 × 106 initial points (θ0, p0) randomly distributed in
ð0; 2πÞ × ð−η=2; η=2Þ, μ ¼ 4, and η=π ¼ GM. The curves are
averaged over the last 100 kicks.
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describes evolution in the Weyl representation. Let, in
particular, Û be the Floquet operator ÛKR of the QKR with
quasimomentum β: ÛKR ¼ expð−iV̂KRÞ expð−iT̂Þ, where

VKR ¼ ℏ−1μ cosðθÞ; T̂ ¼ ℏ−1ð−iℏ d
dθ

þ βÞ2=2: ð6Þ

After a calculation based on Eqs. (4) and (5), we find that

ÛKR ¼ expð−iV̂KRÞ expð−iT̂ Þ; ð7Þ
where

T̂ ¼ −i
�
1

2
ℏnþ β

�
d
dθ

; ð8Þ

FV̂KRΨðθ;φÞ ¼ −2μℏ−1 sinðθÞ sinðφÞFΨðθ;φÞ; ð9Þ
where F denotes the Fourier transform: FΨðθ;φÞ≡P

nΨðθ; nÞenðφÞ. At this point we come to the FGP
construction. In its original version [3,4], it maps the
QKR eigenvalue equation ÛKRψ ¼ eiωψ on a 1D tight-
binding problem. The equation is indeed equivalent to
ðŴ þ ẐÞϕ ¼ 0, where Ŵ and Ẑ are inverse Cayley trans-
forms of expð−iV̂KRÞ and exp½−iðT̂ þ ωÞ�, respectively, and
ϕ ¼ ðiþ ẐÞ−1ψ . Now exp½−iðT̂ þ ωÞ� (hence Ẑ) has a pure
point spectrum, expð−iV̂KRÞ (hence Ŵ) is invariant under
translations over the eigenbasis of T̂, and if μ < π thenW is
bounded so,written in that basis, ðŴ þ ẐÞ looks like a lattice
Hamiltonian, where the eigenvalues of Ẑ play the role of
on-site potentials, and Ŵ describes hopping between sites.
This construction works unaltered if ÛKR is replaced by any
operator (in an arbitrary Hilbert space) that comes in the
form of a product of two unitary operators with the above
properties. For μ < π=2 this is the case with ÛKR thanks to
Eqs. (7), (8), and (9), and FGP immediately yields the
following 2D lattice equation:

X
n0;k0∈Z

Wn−n0;k−k0Φn0k0 þ ZnkðωÞΦnk ¼ 0; ð10Þ

where ZnkðωÞ≡ tan½χnkðωÞ�, χnkðωÞ¼½ω−ðnℏ=2þβÞk�=2.
Forμ < πℏ=2 the couplingsWn;k are the Fourier coefficients
of the analytic function tan½μℏ−1 sinðθÞ sinðφÞ� so they
decay exponentially fast, and Eq. (10) is formally similar
to an eigenvalue equation for a 2D tight-binding model
with short-range hopping. When ℏ is strongly incommen-
surate to 2π, the potential is pseudorandom, and exponential
localization follows. At resonances ℏ and β are commensu-
rate to 2π, so the potential is periodic, enforcing extended
eigenfunctions, and ballistic propagation.
This construction is not applicable as it is when

μ > πℏ=2, because then tan½μℏ−1 sinðθÞ sinðφÞ� has non-
integrable singularities. This difficulty is circumvented by
an improved method [12]. For the Weyl representation of
the QKR, this method replaces Eq. (10) by

X
n0;k0

j ~Wn−n0;k−k0 j sinðχn0k0 ðωÞ þ ϕn−n0;k−k0 Þ ~Φn0k0 ¼ 0; ð11Þ

where ~Wn;k are the Fourier coefficients of e−iVKRðθ;φÞ=2, and
ϕn;k are their phases [16]. In this formulation, disorder also
appears in couplings, which still decay exponentially fast.
We’ve thus rephrased the FGP construction for the QKR

in the phase-space representation. This was possible,
thanks to a special structure of the Weyl propagator of
the QKR, as a unitary operator in L2ðΩÞ. Now we’ll show
that the same is true with the completely classical PF
operator of GTMs. To see this, just replace ℏ by η
throughout, and let the prefactor of FΨ on the right-hand
side of Eq. (9) be replaced by 2φV 0ðθÞ=η. Then, instead of
V̂KR, Eq. (9) defines a new operator V̂GTM, and it is easily
seen that

e−iV̂GTMΨðθ; nÞ ¼ Ψ½θ; n − 2V 0ðθÞ=η�: ð12Þ
Using Eqs. (7) and (8), the full propagator ÛKR is replaced
by

ÛGTMΨðθ; nÞ ¼ Ψðθ0; n0Þ;
θ0 ¼ θ − ηn=2 − β; n0 ¼ n − 2V 0ðθ0Þ=η: ð13Þ

Restricting to even values n, and rescaling n by 1=2, the
map in Eq, (13) is the inverse of the reduced GTM map
[Eq. (2)], so ÛGTM is the PF operator for the dynamical
system [Eq. (2)]. This opens the way to mapping on a
2D lattice model. V̂KR has to be replaced by V̂GTM, so the
improved formulation [Eq. (11)] is necessary, because
tanðφV 0ðθÞ=ηÞ has nonintegrable singularities. “Disorder”
is the same, but couplings are different:

~Wn−n0;k−k0 ¼
1

2π

Z
In−n0

dθe−iðk−k0Þθ;

where In is the interval wherein 2V 0ðθÞ ¼ nη. In the n
direction (momentum) such couplings vanish whenever
jn − n0jη is larger than the maximum of jV0ðθÞj. In the k
direction (harmonics of position) they slowly decay propor-
tional to jk − k0j−1 due to discontinuities of V 0ðθÞ. On
such grounds, whenever η is incommensurate to π we
are led to expect (i) localization in momentum, and
(ii) delocalization over the harmonics of position. We
consider (i) to be consistent with numerical results, because
the argument is too crude to discriminate quasilocalization
from strict localization; inferring the power-logarithmic
spreading from the 2D lattice dynamics is a nontrivial
interesting problem. At variance with QKR, (ii)implies a
continuous GTM spectrum in all cases. In order to
check (ii), we have numerically computed the PF evolution
of a given function of n and θ. Fourier expansion at
each time t yields amplitudes fnkðtÞ at the sites in the 2D
lattice. Our numerical results show that the distribution
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Pðk; tÞ≡P
njfnkðtÞj2 rapidly spreads over the whole

available Fourier basis.
Our present evidence of GTM quasilocalization and

resonances is for cases when η=π is either strongly irra-
tional (in fact, equivalent to the golden mean), or rational.
A better understanding of this intriguing dynamical behav-
ior will require analysis of how it depends on the degree
of irrationality of η=π.
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