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Thirty years ago, theorists showed that a properly designed combination of incident waves could be fully
transmitted through (or reflected by) a disordered medium, based on the existence of propagation channels
which are essentially either closed or open (bimodal law). In this Letter, we study elastic waves in a
disordered waveguide and present direct experimental evidence of the bimodal law. Full transmission and
reflection are achieved. The wave field is monitored by laser interferometry and highlights the interference
effects that take place within the scattering medium.
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Light traveling through thick clouds, electrons con-
ducting through metals, or seismic waves in the Earth’s
crust are all examples of waves propagating through
disordered materials. Energy transport by waves under-
going strong scattering is usually well described by
diffusion theory. However, this classical picture neglects
interference effects that may resist the influence of
disorder. Interference is responsible for fascinating phe-
nomena in mesoscopic physics. On the one hand, it can
slow down and eventually stop the diffusion process,
giving rise to Anderson localization [1,2]. On the other
hand, it can also help waves to find a way through a maze
of disorder [3]. Actually, a properly designed combination
of incident waves can be completely transmitted through a
strongly scattering medium, as suggested by Dorokhov
and others more than twenty years ago [4–7]. This
prediction has recently received a great deal of attention
mostly due to the emergence of wave front shaping
techniques in optics [8].
In order to address the open channels (i.e., to achieve

full energy transmission) across a disordered wave guide,
one has to perform a complete measurement of the
scattering matrix S. The S matrix relates the input and
output of the medium [7]. It fully describes wave
propagation across a scattering medium. It can be gen-
erally divided into blocks containing transmission and
reflection matrices, t and r, with a certain number N of
input and output channels. Initially, random matrix theory
(RMT) had been successfully applied to the transport of
electrons through chaotic systems and disordered wires
[7]. However, the confrontation between theory and
experiment has remained quite restrictive since specific
input electron states cannot be addressed in practice. On
the contrary, a coherent control of the incident wave field
is possible in classical wave physics. Several works have
demonstrated the ability of measuring the S matrix, or at
least some of its subspaces, in disordered media, whether
it be in acoustics [9–11], electromagnetism [12,13], or
optics [14–17].

The existence of open channels has been revealed by
investigating the eigenvalues T of the Hermitian matrix
tt†. Theoretically, their distribution should follow a
bimodal law [4,5,7], exhibiting two peaks. The highest
one, around T ∼ 0, corresponds to closed (i.e., strongly
reflected) eigenchannels. At the other end of the spectrum
(T ∼ 1), there are g open eigenchannels. g ¼ Nl�=L is the
dimensionless conductance [18], L is the sample thick-
ness, and l� is the transport mean free path. By exciting
selectively open or closed channels, a nearly complete
transmission [19,20], reflection, or absorption [21] of
waves can be achieved. This means that a designed wave
front can be fully transmitted or, on the contrary, fully
reflected by a scattering medium, which is in total
contradiction to the classical diffusion picture. Although
some indirect evidences of bimodality have been pointed
out experimentally as, e.g., the reduction of the shot noise
power in electrical conductors [22,23], these remarkable
interference effects have never been directly observed so
far. Indeed, the bimodal distribution relies on the con-
servation of energy (i.e., S is a unitary matrix). In other
words, all the channels should be addressed at the input
and measured at the output [24]. In optical experiments,
the finite numerical aperture of the illumination and
detection systems limits the angular coverage of the input
and output channels [25]. In acoustics or electromagnet-
ism, the spatial sampling of measurements has not
been sufficient to have access to the full S matrix so
far [9,10,12].
In this Letter, we present experimental measurements

of the full S matrix across a disordered elastic wave guide.
To that aim, laser-ultrasonic techniques have been used
in order to obtain a satisfying spatial sampling of the field
at the input and output of the scattering medium. The
unitarity of the S matrix is investigated and the eigenvalues
of the transmission matrix are shown to follow the expected
bimodal distribution. Moreover, full experimental trans-
mission and reflection of waves propagating through
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disorder are achieved. The wave fields associated with
the open and closed channels are monitored within the
scattering medium by laser interferometry to highlight the
interference effects operating in each case.
We study here the propagation of elastic waves across

a duralumin plate (aluminium alloy) of dimension
500 × 40 × 0.5 mm3 (see Fig. 1). The homogeneous plate
is a waveguide in which randomness is introduced by
drilling circular holes with diameter 1.5 mm and concen-
tration 11 cm−2, distributed over a thickness L ¼ 20 mm
and the whole width of the plateW ¼ 40 mm. The Smatrix
associated with the disordered slab is measured with the
laser-ultrasonic setup described in Fig. 1. Elastic waves are
generated in the thermoelastic regime [26] by a pumped
diode Nd:YAG laser providing pulses having a 20 ns
duration and 2.5 mJ of energy. The out-of-plane component
of the local vibration of the plate is measured with a
heterodyne interferometer [26]. In the frequency range
of interest (0.32 to 0.37 MHz, Δf ¼ 0.05 MHz), the
plate thickness (d ¼ 0.5 mm) is small compared to the
wavelength (λ ∼ 3.5 mm).
Three types of elastic waves can propagate through

the plate: shear horizontal (SH), extensional, and
flexural waves [27]. For flexural waves, polarization is
perpendicular to the plane of the plate whereas it is in-plane
for SH and extensional waves. As a consequence, only
flexural waves are measured by the heterodyne interfer-
ometer. Moreover, as scatterers consist in through holes,
there cannot be conversion of SH and extensional modes
into flexural modes via scattering for symmetry reasons
[28]. Hence, the experimental setup shown in Fig. 1 allows
a measurement of the S matrix associated with the flexural
modes in the plate.
The first step of the experiment consists in measuring the

impulse responses between two arrays of points placed on
the left and right sides of the disordered slab. Each impulse

response is averaged over 128 laser shots in order to reduce
additive electronic noise [29]. The array pitch is 0.8 mm
(i.e., < λ=2) which guarantees a satisfying spatial sampling
of the wave field. The impulse responses between any
two points of the same array form the time-dependent
reflection matrices, r and r0, from left to left and right to
right, respectively. The set of impulse responses between
the two arrays yields the time-dependent transmission
matrices t (from left to right) and t0 (from right to left).
From these four matrices, one can build the S matrix in a
point-to-point basis,

S ¼
�
r t0

t r0

�
: ð1Þ

A temporal Fourier transform of S is then performed over a
time range Δt ¼ 120 μs that excludes the echoes due to
reflections on the ends of the plate. Frequency components
that are spaced by more than the correlation frequency δf
give rise to uncorrelated speckle patterns. In our disordered
sample, we have measured δf ∼ 0.017 MHz. Hence, the
number Nf ¼ Δf=δf of independent scattering matrices S
that are obtained over the frequency bandwidth is 3. The
correlation frequency also yields an estimation for the
Thouless time (τD ∼ 1=δf ∼ 60 μs), i.e., the mean time it
takes for a wave to cross the sample through its zigzag
motion. We check that τD ∼ Δt=2 and that most of the
energy has escaped from the sample when the measurement
is stopped. The next step of the experimental procedure
consists in decomposing the S matrices in the basis of the
flexural modes of the homogeneous plate. These eigenm-
odes and their wave numbers have been determined
theoretically using the thin elastic plate theory [29–31].
They are normalized so that each of them carries unit
energy flux across the plate section. The transformation of
the S matrix from the point-to-point basis to the channel
basis is described in detail in the Supplemental Material
[29]. Figure 2(a) displays an example of matrix S in the
channel basis recorded at frequency f ¼ 0.36 MHz.
Despite its overall random appearance, one can see the
residual ballistic wave front that slightly emerges along the
diagonal of the transmission matrices. The matrix S also
exhibits long-range correlations that will account for the
bimodal behavior of the transmission or reflection matrices.
Theoretically, energy conservation would imply that S

is unitary. In other words, its eigenvalues should be
distributed along the unit circle in the complex plane.
The eigenvalues si of the S matrix at f ¼ 0.36 MHz are
displayed in the complex plane in Fig. 2(b). The dispersion
of these eigenvalues around the unit circle questions
the validity of the energy conservation assumption. Yet
duralumin is known for its weak absorption properties
(∼1.7 dB⋅m−1 in the 0.1–0.5 MHz frequency bandwidth
[32]). Radiation losses through conversion of elastic waves
into acoustic waves in surrounding air can also be neglected

FIG. 1 (color online). Experimental setup. The S matrix is
measured in the time domain, between two arrays of points
placed 5 mm away from each side of the disordered slab. The
array pitch is 0.8 mm (∼λ=4). Flexural waves are generated on
each point by a pulsed laser via thermoelastic conversion over a
focal spot of 1 mm2. The normal component of the plate vibration
is measured with an interferometric optical probe. The laser
source and the probe are both mounted on 2D translation stages.
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(∼1 dB⋅m−1 at 0.36 MHz [33]). Actually, the nonunitarity
of S is due to the experimental noise. Its magnitude, its
nature, and its various origins are described in detail in the
Supplemental Material [29]. In the following, we compen-
sate for this undesirable effect by building a virtual
scattering matrix Ŝ with the same eigenspaces as S but
with normalized eigenvalues [see Fig. 2(b)], such that

ŝi ¼ si=jsij; for i ¼ 1;…; N: ð2Þ
The phase information is thus unchanged and only the
amplitude is normalized to meet the energy conservation
requirement. We will show that this normalization based on
energy conservation is essential to observe the open channels.
We first focus on the transmission eigenvalues T and T̂

computed from S and Ŝ, respectively. Their sum directly
provides an estimation of the dimensionless conductance of
the disordered slab: g ¼ P

iTi ∼ 8 and ĝ ¼ P
iT̂i ∼ 8.1. As

we have access to N ¼ 2W=λ ∼ 22 independent channels,
this yields a ratio L=l� ∼ 2.75 according to Ohm’s law.
The distributions of the transmission eigenvalues, ρðTÞ
and ρ̂ðT̂Þ, are estimated by averaging their histograms over
the frequency bandwidth. Figures 2(c) and 2(d) show the
comparison between these distributions and the bimodal
law ρb which is theoretically expected in the diffusive
regime [7],

ρbðTÞ ¼
g

2T
ffiffiffiffiffiffiffiffiffiffiffi
1 − T

p : ð3Þ

Strictly speaking, our system is not in a fully diffusive
regime (L ∼ 2.75l�). Yet, the measured eigenvalue distri-
bution ρðTÞ is in correct agreement with the bimodal law
ρbðTÞ with a large peak around T ¼ 0 associated with the
closed channels and a smaller peak around T ¼ 1 asso-
ciated with the open channels [Fig. 2(c)]. Nevertheless,
some channels exhibit a transmission coefficient superior
to 1, which violates energy conservation. This is explained
by the nonunitarity of S pointed out in Fig. 2(b). On the
contrary, after normalization of S [Eq. (2)], all transmission
eigenvalues T̂ are repelled below 1 and the eigenvalue
distribution ρ̂ðT̂Þ closely follows the expected bimodal law
[Fig. 2(d)]. This confirms that the unitarity of S is decisive
and that experimental noise can prevent from recovering
the bimodal law experimentally. In the Supplemental
Material [29], a numerical simulation confirms that the
normalization of S [Eq. (2)] allows us to retrieve almost
completely the open channels, thus canceling the detri-
mental effect of noise. We will now prove it experimentally
by probing the open eigenchannels deduced from S and Ŝ.
Whereas the eigenvalues of tt† yield the transmission

coefficients of each eigenchannel, the corresponding eigen-
vector provides the combination of incident modes that
allows us to excite this specific channel. Hence, the wave
field associated with each eigenchannel can be measured
by backpropagating the corresponding eigenvector. To that
aim, the scattering medium is scanned with the interfero-
metric optical probe [29]. As a reference, the wave field
induced by an incident plane wave is shown in Fig. 3(a).
Figure 3(e) plots the corresponding intensity averaged
along the plate section (y axis) as a function of depth x.
Figure 3(b) displays the wave field associated with a closed
eigenchannel (T ∼ 0). The wave is fully reflected back to
the left. This shows that the incoming wave field has been
successfully tailored to fit the randomness of the wave-
guide, making it a nearly perfectly reflecting medium.
Beyond one transport mean-free path, the intensity
decreases very rapidly in agreement with numerical sim-
ulations [15]. Figures 3(c) and 3(d) display the propagation
of open eigenchannels (T ∼ 1 and T̂ ∼ 1) deduced from the
measured and normalized matrices S and Ŝ, respectively.
Both wave fields clearly show the constructive interfer-
ences that help the wave to find its way through the maze
of disorder. The corresponding intensity profiles are shown
in Figs. 3(g) and 3(h). In both cases, the field intensity
increases inside the medium. For the eigenchannel derived
from the S matrix, the intensity measured at the output
of the scattering medium is smaller than at the input
[Fig. 3(g)]. Experimental noise in the S matrix prevents
us from addressing a fully opened channel. On the contrary,
Fig. 3(h) illustrates how nicely the normalized Ŝ matrix
gives access to a fully open eigenchannel with equal
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FIG. 2 (color online). (a) Real part of the S matrix measured at
f ¼ 0.36 MHz. The black lines delimit transmission and reflec-
tion matrices as depicted in Eq. (1). (b) Eigenvalues si (red dots)
and ŝi (blue squares) of the measured and normalized scattering
matrices, S and Ŝ, respectively. The eigenvalues are displayed in
the complex plane. The black continuous line denotes the unit
circle. (c),(d) Transmission eigenvalue histograms, ρðTÞ and
ρ̂ðT̂Þ, averaged over the frequency bandwidth. Both distributions
are compared to the bimodal law ρb [red continuous line, Eq. (3)].
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intensities at the input and output of the scattering medium.
The incoming wave field has been successfully designed to
make the scattering slab completely transparent.
From a more general point of view, we want to highlight

that being able to address the open eigenchannels is the
key to make the best of a scattering medium, for many
applications. For instance, in digital telecommunication
the maximum information that can be conveyed with no
error is Shannon’s capacity C. C is actually determined by
the number g of open eigenchannels, in a multiple input-
multiple output scheme [24,35]. Hence, a complete channel
control allows us to reach the maximum information
transfer rate. Another example is wave focusing through
a multiple scattering medium, whether it be by time reversal
[36,37], phase conjugation [38], or wave front shaping
optimization as the one used by Vellekoop and Mosk [39].
At one frequency, the maximum contrast between the focal
spot and the background intensity at the output is given by
the effective number Neff ¼ 3g=2 of channels contributing
to the transmitted field [13,40]. Again, the maximum is
reached when the channel control is complete and the
bimodal law is retrieved. Hence, the phase conjugation
process is fully optimized only if all the open eigenchannels
are properly addressed.
In summary, this experimental study allows the direct

observation of fully open and closed eigenchannels through

a scattering medium. In agreement with theoretical pre-
dictions, transmission eigenvalues across a disordered
system are shown to follow a bimodal law. The wave field
associated with each eigenchannel is measured and illus-
trates the remarkable interference mechanisms induced by
disorder. From a fundamental point of view, such mea-
surements will allow us to check a whole set of RMT
predictions that could not have been confronted to experi-
ment so far. The transition towards Anderson localization
should lead to an extinction of fully opened eigenchannels
[4,5,7] and the occurrence of necklace states [3]. From a
more practical point of view, this work paves the way
towards an optimized control of wave fronts through
scattering media in all fields of wave physics, whether it
be for communication, imaging, focusing, absorbing, or
lasing purposes.
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FIG. 3 (color online). Absolute value of the wave field in the scattering medium at f ¼ 0.36 MHz associated with (a), an incident
plane wave, (b), a closed eigenchannel, (c), an open eigenchannel deduced from the measured S matrix, and (d), an open eigenchannel
deduced from the normalized Ŝ matrix. The corresponding intensities averaged over the wave guide section (y axis) are shown versus
depth x in lower panels (e)–(h). They are all normalized by the intensity at the plane of sources (x ¼ 0).
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