
Controlling Cherenkov Radiation with Transformation-Optical Metamaterials

Vincent Ginis,1 Jan Danckaert,1 Irina Veretennicoff,1 and Philippe Tassin2*
1Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium

2Department of Applied Physics, Chalmers University, SE-412 96 Göteborg, Sweden
(Received 29 December 2013; published 16 October 2014)

In high energy physics, unknown particles are identified by determining their mass from the
Cherenkov radiation cone that is emitted as they pass through the detector apparatus. However, at higher
particle momentum, the angle of the Cherenkov cone saturates to a value independent of the mass of the
generating particle, making it difficult to effectively distinguish between different particles. Here, we show
how the geometric formalism of transformation optics can be applied to describe the Cherenkov cone in an
arbitrary anisotropic medium. On the basis of these results, we propose a specific anisotropic metamaterial
to control Cherenkov radiation, leading to enhanced sensitivity for particle identification at higher
momentum.
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Cherenkov radiation, experimentally discovered by
Pavel Cherenkov [1] and theoretically formalized by Ilya
Frank and Igor Tamm [2], is a peculiar form of electro-
magnetic radiation that arises when charged particles travel
through a medium at a velocity greater than the phase
velocity of light in that medium [3]. This effect has proven
useful in applied and experimental physics [4], e.g., for the
detection of cosmic rays [5], novel electromagnetic sources
[6–8], localized sensing in biological systems [9], spec-
troscopy of complex nanostructures [10], and identification
of elementary particles [11]. Recently, there has been
significant interest in Cherenkov radiation inside or in
the vicinity of electromagnetic structured media [12–24].
This interest is fueled by the prediction that the direction of
the Cherenkov cone can be reversed, such that the
Cherenkov radiation and the emitting particle travel in
opposite directions [25]. Aside from this experimentally
observed phenomenon—called reversed Cherenkov radia-
tion [12–17,20,21]—other unusual phenomena, such as
Cherenkov radiation without a velocity threshold [24], have
been predicted when charged particles travel through
metamaterials and other electromagnetic structured systems
[26–32].
Here, we demonstrate how the geometric techniques of

transformation optics [33–37] can be used to understand
the Cherenkov radiation emitted in arbitrary anisotropic
media. We start by calculating the Cherenkov radiation
emitted by a particle traveling along a principal axis of an
anisotropic medium and we show how the resulting
Cherenkov cone can be described from the three-
dimensional coordinate transformation in the underlying
electromagnetic space. Subsequently, we discuss the phys-
ics of Cherenkov radiation in uniaxially transformed media,
and we highlight the fundamental difference between
transformations in directions parallel and perpendicular
to the velocity of the charged particle. Finally, we

demonstrate how the geometric reality of these media
offers an elegant recipe for designing ring imaging
Cherenkov (RICH) detectors with better resolution.
To this end, we calculate the Cherenkov radiation that is

emitted by amoving charge, propagating along the x axis of a
medium with material parameters that correspond to a
background refractive index (ϵb ¼ n2b) on top of which a
linear coordinate stretching along the principle axes has been
implemented: x0 ¼ fðxÞ, y0 ¼ gðyÞ, z0 ¼ hðzÞ. Following
the equivalence relation of transformation optics [33,34],
the material parameters of this medium are given by [38]

ϵx;x=ðϵ0ϵbÞ ¼ μx;x=μ0 ¼ g0ðyÞh0ðzÞ=f0ðxÞ;
ϵy;y=ðϵ0ϵbÞ ¼ μy;y=μ0 ¼ f0ðxÞh0ðzÞ=g0ðyÞ;
ϵz;z=ðϵ0ϵbÞ ¼ μz;z=μ0 ¼ f0ðxÞg0ðyÞ=h0ðzÞ: ð1Þ

It can then be shown that the field component with wave
vector k generated by a charged particle, traveling at
velocity v, will oscillate at a frequency ω ¼ k · v [38].
For a given frequency ω, we obtain the direction of the
emitted wave by matching ω ¼ k · v with the dispersion
relation of the medium in which the charged particle is
moving. The dispersion relation of the medium, defined by
Eq. (1), can be found by inserting a plane monochromatic
solution in the wave equation [38] and yields the following
relation: k2x=f0ðxÞ2þk2y=g0ðyÞ2þk2z=h0ðzÞ2¼ ϵbω

2=c2. We
can now apply this dispersion relation to calculate the
Cherenkov angle in a transformation-optical medium.
Without loss of generality, we can restrict this analysis
to the xy plane. Writing f0ðxÞ ¼ F, g0ðyÞ ¼ G, h0ðzÞ ¼ H
and defining αPH as the angle under which the electro-
magnetic waves are emitted [see Fig. 1(a)], we find that

tanðαPHÞ ¼
ky
kx

¼ G
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2ϵbω

2=c2 − k2x
p

kx
¼ G

F
tanðα�Þ; ð2Þ
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where α� is the angle of Cherenkov radiation emitted in a
medium with refractive index nbF. This angle is simply
given by the traditional Cherenkov formula and, hence,

αPH ¼ arctan
�
G
F
tan

�
arccos

�
c

nbFv

���
: ð3Þ

This result can be better understood from a transforma-
tion-optical perspective. In physical (PH) space, the particle
is moving at a velocity v in the x direction. Since this
coordinate is stretched by a factor F, the particle seems to
be moving at a velocity Fv in the underlying electromag-
netic (EM) space. In this space, the particle simply travels
through an isotropic medium with refractive index nb and,
therefore, emits Cherenkov radiation with an opening cone
θEM ¼ arcsin½c=ðnbFvÞ�. Translating the emitted radiation
back to the physical space, the x and y components of the
cone need to be compressed by a factor F and G,
respectively, in the electromagnetic space. The angle of
the Cherenkov cone then becomes

θPH ¼ arctan

�
F
G
tan

�
arcsin

�
c

nbFv

���
: ð4Þ

In Figs. 1(b) and 1(c), we show the Cherenkov cones as a
function of the coordinate stretching in both directions as
obtained from finite-elements computer simulations [38].
The data points are in excellent agreement with Eq. (4), the
analytical formula derived from the transformation optics
perspective. It is also clear that a coordinate transformation
in the longitudinal direction has a fundamentally different
effect on the Cherenkov radiation than a transformation
perpendicular to the direction of propagation. This is
related to the fact that a transformation perpendicular to
the trajectory of the charged particle only stretches the
Cherenkov cone, whereas a transformation along the path
of the particle also alters the velocity of the particle in the
underlying electromagnetic space. As soon as this velocity
drops below the speed of light c, Cherenkov radiation
ceases to exist. This Cherenkov cutoff is present in
Fig. 1(c), when the longitudinal scaling factor F
approaches c=ðnbvÞ ¼ 0.5. It is remarkable how the
physics changes before and after a longitudinal coordinate
transformation. In contrast to other transformation-optical
devices, where ray trajectories are manipulated through an
ingenious coordinate transformation, we show, here, that it
is possible to start from a system without Cherenkov
radiation and transform the nonradiating Liénard-
Wiechert potentials into Cherenkov radiation and vice
versa. This is a consequence of the longitudinal trans-
formation scaling the particle’s velocity above or below the
cutoff velocity.
Obviously, an analogous relation is valid in the xz plane,

whose angle can be stretched by another factor

θPH ¼ arctan

�
F
H
tan

�
arcsin

�
c

nbFv

���
: ð5Þ

Therefore, for a three-dimensional transformation-optical
medium, Cherenkov radiation is emitted along an elliptical
cone, as shown in Fig. 2. It is important to note the
generality of the transformation-optical approach to study-
ing Cherenkov radiation. First, the impedance of the
material does not influence the Cherenkov cone angle.
Physically, this can be understood from the fact that the
cone angle is determined by constructive interference and
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FIG. 1 (color online). (a) The definition of the angles αPH and
θPH. The Cherenkov cone in the anisotropic physical space (solid
lines) is a scaled version of the cone in electromagnetic space
(dashed lines). (b)–(c) Full-wave numerical simulations of the
Cherenkov radiation (red symbols) versus the corresponding
analytical expression [Eq. (4)], with F ¼ 1 in (b) and G ¼ 1 in
(c). In these simulations, the particle velocity and the background
refractive index are related by c=nbv ¼ 0.5. The same results are
obtained for impedance-matched and for nonmagnetic implemen-
tations. The insets show the corresponding density plots of
the intensity of the emitted Cherenkov radiation. The shaded
area in (c) highlights the parameter regime in which no Cherenkov
radiation is emitted because the velocity of the charged particle
in electromagnetic space has dropped below the speed of light
(nbFv < c).
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that the phase accumulation of the electromagnetic waves is
solely determined by the refractive index profile and not by
the impedance. We have confirmed this by comparing full-
wave numerical simulations of the matched (ϵ ¼ μ) and the
unmatched (μ ¼ 1) implementations of the coordinate
transformations, and indeed, we retrieved the same angles
in both sets of experiments (see Fig. 1). This is an important
result from a practical point of view. Nontrivial magnetic
response requires resonant electromagnetic elements,
which are typically associated with large dissipative losses.
The ability to implement a general coordinate transforma-
tion by solely manipulating the permittivity components,
therefore, greatly reduces the dissipative losses of the
material implementations. Second, inverse transformation
optics allows us to predict the cone of Cherenkov radiation
in any anisotropic medium by simply relating the material
components to coordinate transformations.
In the second part of this Letter, we demonstrate the

power of transformation optics in the design of detectors
that identify unknown particles in high-energy experi-
ments. Inside a so-called RICH detector, an unknown
particle with a fixed momentum travels through a radiator
and emits a Cherenkov cone. Together with the particle’s
momentum, the Cherenkov cone, which is a measure of the
particle’s velocity, allows for the determination of the mass
and identification of the unknown particle. Unfortunately,
the opening angle of the Cherenkov cone saturates at higher
momenta to a value independent of the particle’s mass:
αPH;sat ¼ arccosð1=nÞ, where n is the refractive index of the
radiator [see Fig. 3(a)]. Consequently, it becomes very
difficult to distinguish between different particles at high
momentum. The traditional solution to this problem is to
lower the refractive index of the radiators. This, indeed,
enhances the resolving power of the detectors at higher
momenta. Unfortunately, it also drastically lowers the
angle under which Cherenkov radiation is emitted and,

consequently, the number of photons emitted per unit
length decreases [41]. This trade off between resolution
and intensity is demonstrated in Fig. 3(a), where we plot the
Cherenkov angle αPH as a function of the particle’s
momentum for several particles traveling through two
traditional, isotropic radiators: one with a refractive index
n1 ¼ 1.05 (silica aerogel radiator) and one with a refractive
index n2 ¼ 1.0005 (CF4 gas radiator).
Using transformation optics, we can now design a

radiator that overcomes this trade off, combining enhanced
resolution at higher momenta with large Cherenkov angles.
As can be inferred from Fig. 3(a), the difference between
the Cherenkov angles of protons and electrons—which is a
good measure of the detector’s resolution—is maximal
close to the momentum cutoff of the proton. This cutoff
corresponds to the momentum where the proton’s velocity
in electromagnetic space vEM ¼ vPHF equals the speed of
light c, where we implicitly assume that the coordinate
transformation acts upon a vacuum region. The best
resolution can, therefore, be attained by shifting this
momentum cutoff close to the momentum of the particle
under investigation. Geometrically, this means that the
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FIG. 2 (color online). The three-dimensional Cherenkov cone
that is emitted in an anisotropic transformation-optical medium,
obtained from full-wave simulations. The background medium
implements a coordinate transformation, defined by Eq. (1)
(nb ¼ 3, F ¼ 0.7, G ¼ 0.5, and H ¼ 1). The measured physical
angles θPH;xy and θPH;xz are in agreement with Eqs. (4)–(5),
derived from the transformation-optical perspective.

0 20 40 60 80 100

0.05

0.10

0.15

0.20

0.25

0.30

v
proton

 = c/n
1

v
proton

 = c/n
2

electron

kaon
pion

proton
refractive index n

1

refractive index n
2

Momentum (GeV/c)

C
he

re
nk

ov
 a

ng
le

 α
PH

 (
ra

d)

α
sat

 = arccos(1/n
2
)

α
sat

 = arccos(1/n
1
)

α
sat

 = arctan(G/F   F2-1 )

v
proton

 = c/F

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00
0 20 40 60 80 100

C
he

re
nk

ov
 a

ng
le

 α
PH

 (
ra

d)
Momentum (GeV/c)

electron

kaon
pion

proton

(a)

(b)

FIG. 3 (color online). (a) The Cherenkov angle versus mo-
mentum for several particles emitted inside traditional isotropic
radiators: the solid lines correspond to a silica aerogel (n ¼ 1.05)
radiator, the dashed lines correspond to a CF4 (n ¼ 1.0005)
radiator. For isotropic radiators, there exists a trade off between
resolution and opening angles. (b) It is possible to combine the
resolution of a CF4 radiator with the large opening angles of a
silica radiator inside a transformation-optical medium in which
vacuum is stretched such that F ¼ 1.0005 and G ¼ 10.
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longitudinal stretching F should decrease as the particle’s
momentum increases. It is clear, from Fig. 3(b), that the
curves shift to the right as F becomes smaller. Although
this increases the relative difference between the
Cherenkov cones of the particles, it also decreases the
absolute value of the cone angles. To compensate for this,
we can stretch the transverse coordinates to open up the
cones. This mechanism is visualized in Fig. 3(b), in which
the longitudinal stretching F equals 1.0005 and the trans-
versal stretching G equals 10. We observe that this detector
has the high resolution of a CF4 radiator, in combination
with the Cherenkov intensity of a silica aerogel radiator.
The large anisotropy required for the implementation of

these transformations is not readily available in naturally
occurring materials, but can be obtained from electromag-
netic structured systems [26–28,31]. An array of thin
metallic cylinders embedded in a dielectric medium is a
typical example of a strong anisotropic metamaterial
[42,43]. The use of nonresonant metamaterials far away
from the Maxwell-Garnett resonance reduces the spectral
dispersion and dissipation present in our transformation-
optical radiator. The functionality of several metamaterial
radiators is evaluated in Fig. 4(a), in which we show the
sensitivity and the magnitude of their Cherenkov angles
as a function of the filling factor and the background
dielectric at fixed momentum (40 GeV=c) and wavelength
(λ ¼ 700 nm). The dashed line shows the trade off of

isotropic radiators and runs from the top left for a high
index radiator to the bottom right for a low index radiator.
The other lines correspond to metamaterials in which silver
cylinders are embedded in background media with various
permittivities (ϵd) where the filling factor is the running
parameter (visualized by the color bar). The colored circles
denote the enhanced resolution of metamaterial radiators
with respect to the traditional ones. The red circle indicates
the location of a silica radiator, whereas the blue circle
corresponds to a metamaterial with a background permit-
tivity ϵd ¼ 3 and a filling factor f ¼ 0.076, as visualized in
Fig. 4(b) (ϵρ ¼ 1.0190þ 0.0299i, ϵz ¼ 3.657þ 0.003i).
The overall magnitude of the opening angles is the
same in both cases, but the difference between the
proton and the electron angles has increased by more than
twofold.
In conclusion, the work reported in this Letter demon-

strates that transformation optics can be used to describe the
Cherenkov cone emitted from relativistic charged particles
traveling through complex anisotropic media. As an exam-
ple of this technique, we calculated the material parameters
that constitute particle detectors with enhanced detection
sensitivity and we proposed a realistic metamaterial imple-
mentation of such a detector. We expect that these insights,
together with the development of novel metamaterials,
including low loss all-dielectric implementations [46–50]
will allow for unprecedented control over the properties of

(a)

0.00

filling factor (f)

0.05

0.10

0.15

0.20

0.25

ε
d
 = 2

ε
d
 = 3

f = 0.076

ε
d
 = 4

ε
d
 = 1.2

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

E
m

itt
ed

 e
le

ct
ro

n 
an

gl
e:

 α
el

ec
tr

on
 (

ra
d)

RICH detector sensitivity: α
proton

 - α
electron

 (mrad)

(b)

FIG. 4 (color online). (a) A comparison between traditional radiators and metamaterial radiators for fixed momentum (40 GeV=c) and
wavelength (λ ¼ 700 nm). Isotropic radiators (black dashed line) suffer from a trade off between sensitivity and magnitude of
Cherenkov angles. The colored lines plot the properties of several metamaterial radiators. Each line corresponds to a different
background dielectric, starting from ϵd ¼ 1.2 at the lowest curve and increasing with steps of 0.2 for the consecutive curves. The color of
the curves encodes the value of the filling factor. In order to obtain a metamaterial implementation with low dissipative losses, we have
restricted the parameter regime to stay far away from the Maxwell-Garnett resonances. The colored circles show that a metamaterial with
ϵd ¼ 3 and f ¼ 0.076 (blue circle) supports Cherenkov angles of the same magnitude (α ¼ 0.310 rad) as a silica aerogel radiator (red
circle), in combination with a more than twofold increased sensitivity (Δα ¼ 0.86 mrad→ Δα ¼ 2.27 mrad). (b) An implementation of
a metamaterial with parameters corresponding to the blue circle in (a): thin silver cylinders embedded in a dielectric with f ¼ 0.076. The
central region is unfilled to allow for unobstructed propagation of charged particles. The thickness of the layers equals 20 and 234 nm for
the silver and the dielectric, respectively. The material can be treated as an effective, homogeneous medium, so transition radiation can
be neglected [44,45].
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Cherenkov radiation, benefiting applications in experimen-
tal and applied physics.
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