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An electromechanical resonator is developed in which mechanical nonlinearities can be dynamically
engineered to emulate the nondegenerate parametric down-conversion interaction. In this configuration,
phonons are simultaneously generated in pairs in two macroscopic vibration modes, resulting in the
amplification of their motion. In parallel, two-mode thermal squeezed states are also created, which exhibit
fluctuations below the thermal motion of their constituent modes as well as harboring correlations between
the modes that become almost perfect as their amplification is increased. The existence of correlations
between two massive phonon ensembles paves the way towards an entangled macroscopic mechanical
system at the single phonon level.
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Two-mode vacuum squeezed states pioneered in quan-
tum optics offer a highly versatile resource for nonclassical
light, where entangled photon pairs are generated from
parametric down-conversion in a nonlinear media [1–5].
Indeed, the success of two-mode squeezing has even
inspired a reinterpretation of this concept with microwave

photons by exploiting the Josephson nonlinearity in
superconducting circuits [6–10]. Perhaps the most striking
iteration of this phenomenon can be found in hybrid
systems composed of a mechanically compliant element
that is parametrically coupled to an electromagnetic
resonator [11]. These so-called cavity electro- or

FIG. 1 (color online). (a) An electron micrograph of the GaAs based coupled electromechanical resonators incorporating a buried
Si-doped layer that is confined within a shallow mesa (purple) where the mechanical elements are integrated with Au Schottky gates
(orange) to form the piezoelectric transducers [22]. The vibration of the modes is detected via the partially depicted laser interferometer
from the right beam, i.e., not the center of mass with the parametric down-conversion being piezoelectrically activated by applying a
pump voltage to both electrodes on the left beam [22]. The pumping generator (ωP) and the local oscillators (ωS and ωA) are all
continuously synchronized (gray dashed line) to ensure phase locked measurements. Also shown are the vibration profiles for the
symmetric and asymmetric modes extracted from a finite element analysis. (b) The output noise from the interferometer, measured in a
spectrum analyzer, reveals the two modes via their picometer order thermal vibrations. (c) The on-resonance thermal motion of both
modes projected in phase space. Also shown is the electrical noise in the measurement setup (black points) acquired in an off-resonance
configuration [22].
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optomechanical systems can readily host parametric down-
conversion, which not only amplifies both resonators [12]
but at the single phonon and photon level can generate an
entanglement between two vastly dissimilar systems [13].
Tantalizingly, an all-mechanical variant of this interaction
would not only open up a path towards the generation of a
macroscopic mechanical entanglement [14,15] but would
also offer the unique prospect of decoding the nature of its
absence in our everyday classical world [16].
One intuitive approach to mechanical two-mode squeez-

ing is to utilize multimode electromechanical resonators,
which can mimic the dynamics of cavity electro- or
optomechanical systems [17–20]. Although these phonon
cavity electromechanical systems can host parametric
down-conversion, in practice, the large input excitation
needed to activate the nonlinear parametric interaction
between two vibration modes has yielded only modest
gains, which has rendered the study of this interaction
inaccessible [17,18]. To address this, we have developed
an electromechanical resonator, shown in Fig. 1(a) and
detailed elsewhere, that consists of two doubly clamped
beams that are spectrally closely spaced and intercoupled
via an exaggerated overhang between them [21]. This
structure sustains two strongly coupled vibration modes
labeled symmetric (S) and asymmetric (A), also shown in
Fig. 1(a), and in combination with piezoelectric transducers
that are incorporated directly into the mechanical elements
provides the key to realizing efficient parametric down-
conversion.
The piezoelectric transducers offer potent means to

nonlinearly modulate the spring constant of the electro-
mechanical system by generating stress [18,19]. If this
modulation is activated at the frequency difference between
the modes, it enables a beam splitter interaction to be
switched on, which results in sidebands being generated
around both modes, and their subsequent overlap enables
them to couple and exchange energy [18,19,23,24]. On the
other hand, if this modulation is implemented at the sum
frequency of the two modes, it can permit parametric down-
conversion of the input modulation, resulting in nonde-
generate parametric amplification of both modes [12,18].
Physically, the sum frequency modulation of the electro-
mechanical system’s spring constant has components that
can parametrically activate the symmetric and asymmet-
ric modes.
The total Hamiltonian of the system in this configuration

can then be expressed as

H¼
XA

n¼S

ðP2
n=2mnþmnω

2
nQ2

n=2ÞþΛQSQAcosðωPtÞ; ð1Þ

where the first two terms are the kinetic and potential
energies, respectively, with canonical coordinates Qn and
Pn denoting the position and conjugate momentum of the
constituent modes with frequencies ωn and mass mn [18].

The last term describes the parametric down-conversion
when the modulation is activated at the sum frequency
ωP ¼ ωS þ ωA, where the coupling coefficient Λ is propor-
tional to the pump voltage as detailed in the Supplemental
Material [22]. Although the present formulation is mani-
festly classical, the last term is analogous to aSaA þ a†Sa

†
A

in a quantum mechanical picture within the rotating frame
approximation, where an and a†n are the annihilation and
creation operators for the two modes, and this interaction
forms the basis of two-mode squeezing, i.e., entanglement
generation from parametric down-conversion [1,25].
Ostensibly, entanglement between the two modes is
unavailable in the present classically bound system, but
remarkably this Hamiltonian indicates that correlations
between the modes can even emerge in the thermal limit
with large phonon populations [22]. Consequently, an
observation of the correlations generated by the parametric
down-conversion process, between two classical modes,
would lay a pivotal marker on the road towards entangling
two massive mechanical systems [14].
The vibration of the two modes can be readily resolved

via their thermal motion in the output noise spectrum from
an optical interferometer based probe, which reveals

(a)

(c)

(b)

FIG. 2 (color online). (a),(b) The thermal motion of the
symmetric and asymmetric modes, respectively, is amplified
when the electromechanical resonator’s spring constant is
pumped at the sum frequency of the constituent modes.
(c) The resultant gain of both modes referenced to their bare
thermal motion (solid lines) is accompanied with a narrowing of
their respective power bandwidths Δω=2π (points) as a function
of the pump intensity. At the largest pump amplitudes, the quality
factor of both modes converges to ∼105 before undergoing
nondegenerate parametric resonance.

PRL 113, 167203 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

17 OCTOBER 2014

167203-2



ωS=2π ¼ 246 kHz and ωA=2π ¼ 262 kHz with quality
factors of 1300 and 2200, respectively, as shown in
Fig. 1(b). Alternatively, the thermal motion from both modes
can also be projected into phase space by decomposing their
displacements QnðtÞ ¼ Xn cosðωntÞ þ Yn sinðωntÞ within a
narrow bandwidth into in-phase and quadrature components,
i.e., Xn and Yn respectively. In practice this involves mixing
the output from the interferometer with two local oscillators,
which are locked exactly onto the resonances of the two
modes, and then demodulated in two lock-in detectors over a
period of 300 s with a sampling rate of 50 ms, resulting in
four simultaneously acquired time series for all four com-
ponents, each with 6000 points per measurement. The phase
portraits reconstructed from this data yield circularly sym-
metric distributions, shown in Fig. 1(c), which confirm that
the thermal motion of both modes is random with all
vibration phases being equally available [26].
First, in order to investigate the availability of parametric

amplification, namely the rate at which the phonons are
generated begins to exceed their rate of decay from both
modes, the system is pumped at ωP by activating the
piezoelectric transducers as detailed in Fig. 1(a) and the
output noise spectra around both modes is acquired as
shown in Figs. 2(a) and 2(b). This measurement reveals

that the thermal motion of both modes can be amplified as
the pump voltage is increased, with gains of more than
20 dB becoming available, before they undergo regener-
ative oscillations as shown in Fig. 2(c) [11,12,18,19].
Repeating this measurement and projecting the outputs
in phase space, as detailed above and shown in Figs. 3(a)
and 3(b), not only reconfirms the amplification but also
indicates the phase preserving nature of this effect [6,7].
The parametric down-conversion simultaneously gen-

erates signal and idler phonons in both modes, thus
amplifying their thermal motion. As a result, the noise,
namely the amplified thermal motion of both modes,
should be strongly correlated or, in other words, a two-
mode thermal squeezed state will be generated [7]. In
order to confirm this, the cross quadratures of the data
shown in Figs. 3(a) and 3(b) are extracted; i.e., the in-
phase component of the symmetric mode versus the
quadrature component of the asymmetric mode and vice
versa are plotted as shown in Figs. 3(c) and 3(d). This
analysis unambiguously reveals two-mode thermal-noise
squeezing, where the noise along one phase is deampli-
fied at the expense of increased noise in the perpendicular
phase, resulting in squeezed distributions. This specific-
ity in phase space indicates that the two modes are
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FIG. 3 (color online). (a),(b) The phase portraits of the symmetric and asymmetric modes exhibit phase-conserving nondegenerate
parametric amplification in response to the pump phonons undergoing parametric down-conversion when their intensity is increased
from 0 to 0.25 Vrms in increments detailed in panel (e). (c),(d) The cross quadratures of the above data take only specific values in phase
space indicating the existence of correlations between the modes where the squeezing is enhanced as the pump intensity is increased.
(e) The two-mode thermal squeezed states are quantified, in the rotated axis depicted in the insets to Figs. 3(c) and 3(d), via the standard
deviations of their phase-space distributions (points) where the gain is calibrated with respect to the narrowest bare thermal distribution
from YA (dashed line) and is consistent with the theoretical trends derived from the above Hamiltonian (solid lines) as detailed in the
Supplemental Material [22]. Note that the uncertainties associated with the extracted standard deviations are 2 orders of magnitude
smaller and cannot be shown [22].
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correlated whereas an absence of any correlations would
plainly lead to circular distributions.
In order to quantify the noise in the two-mode thermal

squeezed states, a phase factor is introduced to rotate and
then project the amplified (squeezed) distributions onto the
rotated in-phase (quadrature) axis, namely X− and Y− (Xþ
and Yþ) as shown in Figs. 3(c) and 3(d), to statistically
weigh their profiles [22]. This analysis reveals Gaussian
distributions with zero mean for all components where the
extracted standard deviations σ as a function of the pump
amplitude enable a measure of the thermal fluctuations in
the squeezed states as shown in Fig. 3(e) [22]. As expected,
the amplification of the in-phase components results in
larger standard deviations with the corresponding gains
consistent with the noise spectra measurements detailed by
the dashed lines in Fig. 2(c). Concurrently, the quadrature
component distributions become narrower with their stan-
dard deviations becoming even less than that of the bare
modes as referenced by the dashed line in Fig. 3(e).
Calibrating this reduction with respect to the narrowest
bare thermal distribution yields a conservative lower limit
of −4.76 dB squeezing below the thermal level at 300 K
[26–28], which is limited by pump induced heating as
detailed in the Supplemental Material [22].
Although noise reduction in the squeezed states below

the thermal level of the bare modes is one characteristic of
their interdependence [8], further substantiating evidence
can also be elicited by analyzing the temporal correlations
in the data shown in Figs. 3(c) and 3(d). To that end the
absolute correlation coefficient jcov(ZiZjðτÞ)=σZi

σZj
ðτÞj,

where the numerator describes the covariance, Zi ∈
fXS; YS; XA; YAg, and τ is a delay between the constituent
time series, is evaluated. The results of this analysis for a
pump amplitude of 0.1 Vrms, shown in Fig. 4(a), reveal
the absence of any correlation between XS and YS, as
attested to by their circular distribution in phase space [see
Fig. 3(a)]. In contrast, the autocorrelation of XS is exactly 1
at τ ¼ 0, confirming the perfect correlation expected in this
configuration. However, finite correlations between XS∶YA
and XA∶YS can also be discerned at τ ¼ 0, which indicates
that the pump simultaneously generates signal and idler
phonons in both modes in pairs, which is the signature
feature of parametric down-conversion [29].
The correlation coefficients at τ ¼ 0 can be recast into a

matrix for all permutations of Zi, as shown in Fig. 4(b),
which reveals, in addition to the expected perfect autocor-
relations captured by the diagonal elements, finite valued
off-diagonal elements that confirm the existence of correla-
tions between the two modes. Naturally, the magnitude of
the off-diagonal elements can be amplified as the pump
intensity is increased as shown in Fig. 4(c) and this
quantitatively confirms that the two mechanical vibration
modes become almost perfectly entwined as their correlation
coefficient tends to 1. The corresponding variation of the
correlation coefficient can be reproduced by the parametric

down-conversion Hamiltonian as shown in Fig. 4(c) and thus
the simultaneous generation of phonons in both modes not
only amplifies their thermal fluctuations but in the process
fundamentally links them [22].
To evaluate the feasibility of generating two-mode

vacuum squeezed states, the energy of the symmetric
and asymmetric modes can be expressed in terms of
their phonon number Nn ¼ kBT=ℏωn where kB is the
Boltzmann constant and ℏ is the reduced Plank constant,
which reveals that both modes host 24–26 × 106 phonons
at T ¼ 300 K. Consequently, even if the present experi-
ment could be operated at millikelvin temperatures, the
symmetric and asymmetric modes would still sustain
1000 s of phonons where the −4.76 dB squeezing, approx-
imately a factor of 2 reduction in the amplitude fluctuations
corresponding to a factor of 4 reduction in the underlying
phonon populations, would still preclude the generation of
mechanical two-mode vacuum squeezed states. Indeed this
analysis vividly illustrates the need for higher frequency
mechanical modes in combination with cooling as neces-
sary prerequisites to attaining Nn < 1 in order to explore
two-mode vacuum squeezing [13].
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FIG. 4 (color online). (a) The absolute correlation coefficient
between various combinations of components from both modes
extracted with a pump amplitude of 0.1 Vrms as a function of
delay time τ. (b) The corresponding correlation coefficient matrix
at τ ¼ 0 reveals finite off-diagonal elements that verify the
intertwined nature of the two-mode thermal squeezed states.
(c) The variation of the off-diagonal elements of the correlation
matrix as a function of pump intensity (points) and the corre-
sponding theoretical response (solid line).
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The observation of correlations between two ensembles
of millions of phonons, corresponding to the tangible
motion of two massive mechanical vibration modes, opens
up a new perspective on the study of correlated mechanical
systems as well as heralding the prospect of quantum optics
being translated to acoustics in mechanically compliant
architectures [30,31]. Consequently, these results hail a
landmark step on the journey towards generating an all-
mechanical macroscopic entanglement as they establish
that the nonlinear interaction at the heart of two-mode
squeezing can be accessed in a purely mechanical system.
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