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Sought-after ordered structures of mixtures of hard anisotropic nanoparticles can often be thermody-
namically unfavorable due to the components’ geometric incompatibility to densely pack into regular
lattices. A simple compatibilization rule is identified wherein the particle sizes are chosen such that the
order-disorder transition pressures of the pure components match (and the entropies of the ordered phases
are similar). Using this rule with representative polyhedra from the truncated-cube family that form pure-
component plastic crystals, Monte Carlo simulations show the formation of plastic-solid solutions for all
compositions and for a wide range of volume fractions.
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Polyhedral colloidal nanoparticles are versatile building
blocks for designing novel materials with targeted emer-
gent properties. Recent developments in experimental
techniques [1–7] to controllably synthesize and manipulate
polyhedral nanoparticles have fueled many theoretical [8,9]
and simulation studies [10–20] to understand their packing
and phase behavior. These building blocks have been
shown to exhibit a rich phase behavior at finite osmotic
pressures unveiling the presence of novel mesophases. A
mesophase is a partially ordered phase whose properties are
intermediate between those of disordered liquids and
ordered crystals, such as liquid crystals, rotator plastic
crystals, and quasicrystals.
Binary mixtures of polyhedra [21] exhibit a competition

between mixing and packing entropy that often leads to
phase separation at high pressures; indeed, assembly into
binary superlattices using just entropic forces is difficult to
achieve [22]. An earlier study [21] on the miscibility trends
of binary polyhedra mixtures revealed the importance of
the relative size ratio of the components and of similarity in
their mesophase behavior [10]. One of our aims is to
identify shapes and sizes that favor the formation of
entropic rotator mixtures.
A family of truncated cubes, which is readily synthesiz-

able [3,4], has been recently shown to exhibit a diverse set
of phases [12]. Further, the kinetics of the disorder-to-order
transition for some members of this family has been shown
to be substantially faster than that of hard spheres [23],
making them appealing choices for applications requiring
fast self-assembly. In addition to cuboctahedra (COs) and
truncated octahedra (TOs), we choose here a truncated cube
with truncation parameter 0.4 (TC4) [12], since, like COs
and TOs, TC4 also exhibits a rotator mesophase [12]. These
choices are motivated by the hypothesis that mesophasic

partial disorder can provide enough structural leeway to
facilitate ordered solutions to form despite the entropy costs
associated with differences in packing. The main mixtures
studied are the three possible pairings of these three
shapes, and are denoted henceforth as COTO, TC4TO,
and TC4CO.
For any target solid mixture, the relative component size

ratio is an important determinant to control the crystal
lattice spacing. A recent study [21] suggested that the solid
miscibility in a binary mixture of polyhedra can be linked
to the relative values of the order-disorder transition
pressure or ODP. In that study [21], however, the compo-
nents’ ODPs were always substantially different and very
limited solid miscibility was observed; hence, the questions
of what happens when the ODPs matched and whether that
provides optimized mesophase compatibility were left
open. For the present simulations, we set the relative
particle size ratios such that their ODPs are approximately
equal, which coincidentally entail near-equal circumradii;
namely, the ratios of circumradii are CO∶TO ¼ 1∶1 for
COTO, TC4∶TO ¼ 1.01∶1 for TC4TO, and TC4∶CO ¼
1.01∶1 for TC4CO (for TC4 we use the largest circum-
scribing radius). While equal circumradii is an equivalent
criterion to ΔODP ¼ 0 for the main mixtures considered
here, we will also use a fourth mixture of spheres and cubes
to show that ΔODP ¼ 0 optimizes the overall miscibility
even when equal circumradii does not.
For the main mixtures, we probed the phase behavior as a

function of pressure using hard-particle Monte Carlo sim-
ulations in the isothermal-isobaric ensemble, including
swap moves between the position of particles of different
species [21]. We used interfacial runs to test the relative
stability of the phases near a phase transition. While most
simulations used equimolar mixtures, additional runs for
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other compositions were used to more completely map out
the phase diagram. Orientational order was analyzed by
using the P4 order parameter [24] and orientational scatter
plots [25], while the translational order was probed by
using Steinhardt’s order parameters Q4 and Q6 [29] and
diffraction patterns (structure factors). To further character-
ize positional order, we also identified the contributions of
fcc, bcc, or hcp-like motifs [10] by calculating the
distributions of two local bond order parameters (q̄4 and
q̄6) (see details in the Supplemental Material [25]).
The COTO, TC4TO, and TC4CO mixtures exhibit a

mixed rotator mesophase (MRM) in between the isotropic
phase at low pressures and a phase separated state with two

crystalline phases at high pressures (see Fig. 1). This MRM
is stable for all compositions in all three mixtures and for a
sizable range of volume fractions [25]. It is of interest to
characterize such a novel MRM since the rotator phases of
the pure components are distinct in both translational order
and rotational disorder. For instance, after the ODP the COs
and TC4s rotator phases transform into the orientationally
ordered crystal via a first-order transition at the mesophase-
to-crystal transition pressure [12]; in contrast, TOs trans-
form continuously into a crystal phase [23]. Below we
examine the properties of the MRM giving representative
results for the COTO mixture.
In a purely entropic scenario, mixtures (that do not form

tessellating compounds [22]) would be expected to phase
separate at high pressures into nearly pure component
solids to allow denser packings. For our ODP-matched
mixtures, the MRM delays the onset of phase separation
(e.g., P� ≈ 21 in the equimolar COTO). The observed
MRM has intermediate orientational order P4 as shown in
Fig. 2(a) for the COTOmixture, and strong positional order
(Q4 and Q6). Local compositional heterogeneity or incipi-
ent “clustering” can be detected by the average fraction of
like-shaped nearest neighbors to a given particle. This
fraction should equal the overall composition of the given
species in the bulk for an ideal mixture, but it will exceed
that as clustering and a tendency for phase separation
ensues. We observe that for all three mixtures the ratio of
local to global composition or “enrichment factor” f
steadily increases with pressure from its ideal (well-mixed)
value until eventually reaching the solid-solid phase sep-
arated state [Fig. 2(b)]. The more symmetric compositions
have a larger ideal mixing entropy and hence enrichment

FIG. 1 (color online). Pressure (P�) versus composition (xB)
phase diagram for the three main mixtures. DSCC and DSCT are
distorted simple cubic structures of COs and TC4s, respectively
[12,14]. xB represents fraction of COs in the COTO and TC4CO
mixtures, and the fraction of TOs in the TC4TO mixture. Each
diagram is accompanied by a snapshot of the mixed rotator
mesophase (MRM) for xB ¼ 0.5 (at P� ¼ 11.2, 9.6, and 9.6 for
COTO, TC4TO, and TC4CO, respectively), its orientational
correlation plot, and diffraction pattern.

FIG. 2 (color online). Plots showing the effect of changing the
mesophase composition in the COTO mixture (solid part of each
curve represents the stable MRM region). (a) Variation of P4 as a
function of pressure P�. (b) Pressure dependence of the enrich-
ment factor.
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factors closer to unity. For some of the more skewed
compositions, the MRM crystallizes before phase separat-
ing as pressure increases. Figure 2(a) shows how the
mesophase-to-crystal transition (as detected by the
approach of P4 to the threshold value of 0.4 for orienta-
tional order) changes from being nearly continuous for low
CO compositions (similar to pure TOs) to having more
abrupt increases for higher CO compositions (like pure
COs [23]).
Given that none of the MRMs simulated had one

of the known perfect lattice structures, we obtained
the fractions of different standard structural motifs in the
simulated configurations [10]. We observe that in the
equimolar MRMs containing TOs (COTO and TC4TO),
the fraction of bcc order (which is the target structure for
TOs, the better-packing shape in the mixture) increases
with volume fraction (see the Supplemental Material [25]).
Similarly, for TC4CO MRM, the fraction of hcp order
(which is closer to DSCC and DSCT structures that COs and
TC4s favor, respectively) increases with volume fraction.
To test whether the equal ODP rule maximizes rotator

miscibility, we use the COTO mixture as the test bed and
change by�5% the relative size ratio by slightly perturbing
the size of the TOs from its original value (assumed unity,
system O) to be 1.05 (system L, for larger TOs) and 0.95
(system S, for smaller TOs). This rescaled the ODP of the
corresponding TOs from 7.1 (system O) to 7.1 × 0.953 ¼
6.1 (system L) and 7.1 × 1.053 ¼ 8.2 (system S). The first
observation is that systems L and S also exhibit a MRM
over the whole range of compositions, showing that this
MRM behavior is robust to small changes of particle size
ratios (e.g., size polydispersity that may arise from the
experimental synthesis). The extent of miscibility in the
MRM can be quantified by using several metrics: e.g.,
(1) ΔP�

m, the difference between the highest and lowest
pressure where the equimolar MRM phase is stable;
(2) Δϕm, the difference between the highest and lowest
volume fraction where the equimolar MRM phase is stable;
and (3) AMRM, the area where the MRM exists in the
volume fraction versus composition phase diagram. We
observed that the extent of miscibility as inferred from all
metrics decreased for systems L and S relative to systemO.
Further, in a previous study [21] where the size ratio was
63%, the ODP-matching value, no MRM formed for a wide
range of compositions.
While the CO∶TO volume ratio is not a good predictor of

MRMmiscibility as it is closer to unity in the L case than in
the O case (see Table I), the ratio of circumradii is. Equal
circumradii, which also holds for the TC4CO and TC4TO
mixtures described earlier, could be envisioned as allowing
two low-asphericity polyhedral components to freely
rotate, effectively sweeping equal spherical volumes in
the lattice sites of the MRM. This picture is too simplistic,
however, since TOs do not freely rotate in their meso-
phase [23].

To discriminate the role on mixture phase behavior of
particles with equal ODP versus particles with equal
circumradius, the components should not both be round
shaped but one of them have high asphericity. For contrast,
we simulated mixtures of spheres and cubes. Spheres can
be seen as the limiting case of a rounded polyhedra, whose
fcc solid can also be taken to be a rotator if a minimal shape
anisotropy is assumed [30]. Cubes can be seen as the
limiting member of the truncated cube family having
minimal truncation and high asphericity, whose solid phase
is no longer a rotator [10]. Figure 3 shows the phase
diagrams traced using a Gibbs-Duhem integration method

TABLE I. Summary of results for the miscibility range for the
COTO mixture in the original and changed size ratios. Vl and Vs
correspond to the volume of the larger and smaller particle in the
mixture, respectively. El and Es denote edge lengths while Rl and
Rs denote circumradii.

System ΔODP ΔP�
m Δϕm AMRM Vl=Vs El=Es Rl=Rs

O ≈ 0.0 13 0.17 7.0 1.21 1.58 1.0
S ≈þ 1.1 9.0 0.13 6.1 1.04 1.66 1.05
L ≈ − 1.0 3.0 0.09 3.6 1.41 1.50 1.05

FIG. 3. Pressure-composition phase diagrams for spheres
(diameter σ) and cubes (side edge d) with different size ratios.
Top: σ=d ¼ 1.0 (equal inradius). Center: σ=d ¼ 1.23 (equal
ODPs). Bottom: σ=d ¼ 1.732 (equal circumradius). S ¼ sphere
rich solid, C ¼ cube rich solid, I ¼ isotropic phase. P� ¼ Pd3=ϵ.
Data for σ=d ¼ 1.23 are from Ref. [31]. Orientation correlation
plots are shown for the cubes in the three phases occurring at the
eutectic pressure.
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[25,31]. Results are shown for three choices of the sphere
diameter σ to cube edge d ratios: 1 (equal inradius), 1.23
(equal ODPs), and 1.732 (equal circumradius). Equal
circumradii lead to minimal mutual solid solubility and
an almost nonexistent MRM region. In contrast, equal
ODPs lead to maximized mutual solid miscibility with both
a large region where spheres dissolve in the cube-rich solid
(C region) and a large MRM region where cubes dissolve in
the sphere-rich solid (S region in gray). In that latter MRM,
the orientation scatter plot (Fig. 3) reveals that cubes form a
restricted rotator where they lack orientational order but
cannot adopt certain orientations. Such orientational cor-
relations (e.g., see Fig. 1) depend on the shape and size of
the particle relative to those of the cage where it rattles [23].
The above analysis suggests that the ODP is a more

generally predictive parameter of solid-phase miscibility of
two shapes (beyond rotator mesophases). The ODP can be
seen as marking the turning point where packing entropy
takes over as the dominant entropic force determining the
structure of the system. Accordingly, if the components
have the same ODP, their tendencies to order will be
comparable (i.e., synchronized) at any pressure above this
ODP. In Fig. 1, the components have synchronized their
rotator mesophases along the scale of the thermodynamic
field driving the phase transitions (i.e., pressure). Indeed,
for Aþ B mixtures, if ODPA ≪ ODPB then for ODPA <
P < ODPB particles B will have a strong preference for the
isotropic state, while for P > ODPB where both favor
ordered states, particles Awould be much more compressed
than those of B and prone to form a separate A-rich dense
solid. If one considers the pure components and that μ� ¼R
ODP
0 ðZ − 1Þ=PdP is the residual chemical potential of the
isotropic phase in coexistence with the ordered phase (Z is
the compressibility factor), then for hard-core systems
whose isotropic branches of the equation of state are
similar (see Fig. 1 in the Supplemental Material [25]),
having equal ODPs translates into pure mesophases that at
the same pressure also have comparable chemical poten-
tials and (neglecting the typically small ΔPV terms) similar
entropies. If rotational entropies are also comparable (as in
rotator phases), equality of ODPs then approximately
translates into pure mesophases of A and B where each
particle experiences a similar packing entropy or free
volume: a likely helpful condition for coassembly.
As a final test of the equal-ODP rule, we simulated a

ternary equimolar mixture of COs, TC4s, and TOs at ODP-
matching ratios, and found that the ternary MRM is also
stable (with ΔP�

m ≈ 3.6; see the Supplemental Material
[25]). Of course, equality of ODPs is not sufficient to
ensure high solid-phase compatibility; similarity in the type
of ordered structure is also important as with the rotator
mesophase in the COs, TC4s, and TOs. In this context, the
sphere-cube system provides a counterexample where solid
miscibility over all compositions is precluded by the
different pure-component solid behavior.

Recent work from Van Anders et al. [32,33] described
the assembly of anisotropic particles as driven by an
entropic bonding arising from “patches” that is quantifiable
via a potential of mean force and torque (PMFT) (akin to
enthalpic interactions). As the MRM is compressed and the
patches get closer, any PMFT difference between like and
dislike particles becomes more accentuated, making the
mixed state less entropically favorable. This effect is
connected with the changes in local composition discussed
before regarding Fig. 2(b): like-particle contacts are favored
with increasing density as though an effective attraction
(repulsion) acts between the like (unlike) particle types.
Eventually, the entropic cost at higher densities overpowers
the mixing entropy leading to phase separation into two
solids (this analysis does not apply to tessellating poly-
hedral compounds [22]).
Beyond polyhedral particles, binary mixtures of rigid

rods (of diameters D1 and D2 and lengths L1 and L2) with
ODPs associated with isotropic-nematic transitions provide
further insights. Simulation [34] and Onsager’s theory [35]
have shown that rods sufficiently dissimilar in length
and=or diameter phase separate into two nematic phases
at high pressures (a sign of incompatibility). However,
“symmetric" mixtures [36] where L2=L1 ¼ ðD2=D1Þ−ð1=2Þ
so that pure components have the same excluded volume,
and hence identical ODPs, tend to lie well inside the
predicted one-nematic phase domain (see Fig. 3 of
Ref. [35]), with equimolar mixtures having components
with the same extent of orientational order (a sign of
maximal compatibility) and ordering at pressures below the
pure-component ODPs [36]. Further, novel biaxial nematic
phases have also been predicted for equal-ODP (symmet-
ric) blends of rodlike and platelike ellipsoids [37–39]. Note
that in these examples and our simulated systems, ODP
equality is not a prescription that guarantees full mesophase
miscibility (which could only happen when particle shapes
and pure-component behaviors are not too disparate);
instead, it provides a guideline for conditions that favor
miscibility (even if only a partial one, as for the cube-sphere
example of Fig. 3).
In summary, we find that by choosing size ratios that

synchronize the onset of the plastic crystals in the pure
components of a mixture, fully mixed mesophases are
favored despite incompatibilities in the lattice structure of
the pure component crystals. A vast array of applications
[40–45] will benefit from new routes to create nanoparticle
superstructures. Just as liquid-crystal phases have found
widespread applications as switches and sensors, rotator
phases may also find applications involving the external
control of their rotational state. Since components can have
different chemistries, the ability to produce rotator phases
of any composition should add to this potential.
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