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An ab initio based framework for quantitatively assessing the phonon contribution due to magnon-
phonon interactions and lattice expansion is developed. The theoretical results for bcc Fe are in very good
agreement with high-quality phonon frequency measurements. For some phonon branches, the magnon-
phonon interaction is an order of magnitude larger than the phonon shift due to lattice expansion,
demonstrating the strong impact of magnetic short-range order even significantly above the Curie
temperature. The framework closes the previous simulation gap between the ferro- and paramagnetic limits.
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An understanding of the mutual interaction between
different temperature-induced excitations in solids is a
pivotal challenge for the simulation of thermodynamic
properties of many materials. A particularly important
interaction is the delicate interplay between magnetic and
atomic degrees of freedom, building the basis for many
methodological applications [disordered local moments
(DLM) molecular dynamics [1], magnetic empirical poten-
tials [2]] as well as for integrated computational materials
engineering (magnetic shape memory alloys [3], Ni-based
superalloys [4], steels [5,6]). For Fe-based materials, it is
well known that magnetoelastic effects are of tremendous
importance for the interpretation of various phenomena
such as the Invar effect [7], diffusion processes [8], dis-
location dynamics [9], and phase stabilities [10].
Experimental studies of phonons at elevated tempera-

tures can help elucidate magnon-phonon coupling. Neutron
scattering experiments of phonon dispersions have provided
important data at selected temperatures [11]. Nuclear
resonant inelastic x-ray scattering measurements are more
amenable for showing thermal trends with measurements
at many temperatures, and we have recently performed
nuclear resonant inelastic x-ray scattering measurements of
the phonon density of states of bcc Fe at 38 temperatures
through the Curie transition [12]. Nonharmonic changes
in the phonon DOS and vibrational entropy were found
to track the change inmagnetizationwith temperature. Since
experimental analysis of phonon DOS broadening suggests
explicit anharmonic contributions from phonon-phonon
interactions to be an order of magnitude smaller, these
new results are suggestive of large magnon-phonon inter-
actions in bcc Fe.
Parameter-free electronic structure calculations like den-

sity functional theory (DFT) in principle provide access to
interatomic forces, spin-polarized energetics, and their inter-
actions. Force-constant calculations and spin simulations
have indeed been performed for decades [10,13]. However,

most studies have been restricted to separate investigations
of the two effects, whereas their mutual coupling could only
be addressed in recent years [1,14–16]. The T ¼ 0 K limit
of a ferromagnetic system like Fe is the most straight-
forward case [17] since calculating force constants for a
single magnetic configuration with all spins pointing in
the same direction is sufficient (“FM limit” in Fig. 1). The
infinite-temperature limit of a paramagnetic system with
fully disordered spins (“PM limit”) is significantly more
challenging due to the large magnetic phase space that needs
to be sampled for an accurate prediction of the coupling.
Significant progress has been made only very recently with
techniques based on DLM and spin molecular dynamics
[1,18], a spin-spiral approach [15], dynamical mean field
theory [14], and a spin-space averaging procedure [16].
Given the complexity of the problem, present day

methods are currently applied only at very low temperatures
(T ≈ 0 K), where significant long-range order is present,
and at very high temperatures (T ≫ TC; TC ¼ Curie tem-
perature), where the system has lost all order in the spin
arrangement. Intermediate temperatures are at present not
accessible by explicit DFT calculations as prohibitively
many large supercells would be needed to properly capture
the partially destroyed long-range order and the inhomoge-
neously scattered regions with short-range order.
In the present Letter we therefore develop and apply a

method that employs a set of DFT calculations carried out
for only the FM and PM limits in conjunction with quantum
Monte Carlo sampling to obtain properties at intermediate
temperatures. The method is capable of describing magnon-
phonon coupling at arbitrary finite temperatures, closing the
previous simulation gap between the T ¼ 0 K and infinite-
temperature limits. We demonstrate the performance of
the method through good agreement of the calculated
temperature dependence of the phonon frequencies in bcc
Fe with experimental measurements including our new set
of phonon frequencies measured at 38 temperatures.
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The basis of our method is the spin-space averaging
(SSA) formalism within constrained-spin DFT [16]. Its
starting point is the general magnetic Born-Oppenheimer
energy surface EfsigðfRigÞ for a given set of atomic
coordinates fRig and local magnetic spins fsig, with i
running over all atoms. The corresponding SSA free energy
and partition function are

F SSAðTÞ ¼ −kBT lnZ; Z ¼
X

fsig
exp

�
−
Efsig
kBT

�
; ð1Þ

where kB is the Boltzmann constant and where the sum
extends over all magnetic configurations, assuming that the
magnetic fluctuations are fast compared to the nuclear
motion. The SSA force on atom j is directly accessible
from the gradient of the free energy as

FSSA
j ðTÞ ¼ −∂F SSAðTÞ=∂Rj ¼

X

fsig
pfsigðTÞFjðfsigÞ; ð2Þ

where

pfsigðTÞ ¼ exp

�
−
Efsig
kBT

�
=Z ð3Þ

is a Boltzmann weighting factor and

FjðfsigÞ ¼ −∂Efsig=∂Rj ð4Þ

is the force for the atomic and magnetic configuration
ðfRig; fsigÞ. In principle, the SSA formalism allows for
the evaluation of interatomic forces at any given temper-
ature if the weights and forces given by Eqs. (3) and (4) can
be calculated. However, a calculation of Eqs. (3) and (4)
employing explicit DFT calculations is presently not com-
putationally feasible. Monte Carlo simulations and effective

magnetic spin Hamiltonians (e.g., Refs. [19,20]) can be
used to reduce the computational time by restricting the
sampling of the Boltzmann weights to the most relevant
configurations, but the remaining computations are still
formidable. This has so far prevented any practical simu-
lation of the full temperature-dependent magnon-phonon
excitations.
We now develop an alternative approach to solve Eq. (2)

efficiently. Our approach obtains the full temperature
dependence of magnetic interatomic forces with explicit
force calculations for only the two limiting cases of fully
ordered (T ¼ 0 K) and fully disordered (T → ∞) magnetic
configurations. Our key approximation is to expand the
temperature-dependent many-body wave function in a
reduced 2-states basis of these two limits

ΨðTÞ ¼
X

fsig

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfsigðTÞ

q
Ψfsig ≈

ffiffiffiffiffiffiffiffiffiffi
αðTÞ

p
ΨFM

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αðTÞ

p
ΨPM; ð5Þ

where pfsigðTÞ are the weights given in Eq. (3) and αðTÞ
can be regarded as an adiabatic mixing parameter between
both states (FM and PM). Using the expansion Eq. (5) in
combination with the Hellmann-Feynman theorem [21],
we obtain the following expression for the temperature
dependent interatomic forces:

FSSA
j ðTÞ ≈ αðTÞFFM

j þ ½1 − αðTÞ�FPM
j ; ð6Þ

where

FFM
j ¼ −∂EFM=∂Rj; FPM

j ¼ −∂EPM=∂Rj: ð7Þ

The parameter αðTÞ can be obtained via the SSA internal
energy, which can be formally decomposed as

TC 

PM limit 

FM limit

T = 0 K

T

1 
 

 (T
)

TC LRO decreasing 

SRO decreasing 
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Phys. Rev. B 78, 033102 (2008) 

FIG. 1 (color online). Sketch of the developed method coupling the energetics of the magnetic system with explicit DFT force constant
calculations (displaced spin in the middle of each sketch). The gray and green arrows indicate the local magnetic spins for each atom and
the interatomic forces (restoring forces when displacing the center atom), respectively. The explicit force constant calculations
are carried out for the two limits of completely ordered [17] (left side) and fully disordered spins [16] (right side). The force constants for
the intermediate temperature regime (dashed squares) are obtained by coupling the two limits with quantum Monte Carlo simulations
for the magnetic subsystem [19] which explicitly include long- and short-range-order effects (see text for details).
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ESSAðTÞ ¼
X

fsig
pfsigðTÞEfsig ≈ αðTÞEFM þ ½1 − αðTÞ�EPM;

ð8Þ

with the energies of the two limits given by

EFM ¼ ESSAðT ¼ 0KÞ; EPM ¼ ESSAðT → ∞Þ: ð9Þ

If one chooses αðTÞ in Eq. (5) as

αðTÞ ¼ ½ESSAðTÞ − EPM�½EFM − EPM�−1; ð10Þ

then Eq. (8) is formally exact.
The formulation derived here has two major advantages:

(a) The forces in the FM and PM limit, FFM
j and FPM

j , are
fully defined by a gradient on the energy surface [Eq. (7)]
rather than on the free energy surface. Computing the free
energy surface would necessitate including a thermody-
namic average over all magnetic states. While there is just
one relevant configuration for the FM limit, the forces in
the PM limit are governed by completely random spin
configurations that are statistically degenerate [16]. (b) The
temperature dependence is fully carried by the adiabatic
coupling parameter α ¼ αðTÞ. The explicit temperature
dependence of this coupling parameter can be obtained
independently of the DFT force calculations, e.g., as
discussed below, via numerically exact quantum
Monte Carlo simulations for an effective nearest-neighbor
Heisenberg model [19].
We demonstrate the performance of our approach by

applying the method to bcc Fe which is ferromagnetic at
low temperatures and paramagnetic above the Curie tem-
perature of TC ¼ 1043 K. The interatomic forces required
for calculating FFM

j and FPM
j in Eq. (7) have been computed

in a 3 × 3 × 3 cubic supercell containing 54 atoms as
described in detail in Refs. [16,17]. We calculated the
energies entering the coupling parameter αðTÞ in Ref. [19]
by utilizing quantum Monte Carlo simulations [22–24]
for an effective next-nearest-neighbor Heisenberg model
in a supercell containing ≈10000 spins. The simulations
have been performed based on the direct loops algorithm in
the stochastic series-expansion technique, a widely used
approach for Heisenberg-like spin Hamiltonians (see, e.g.,
[24] and references therein).
The input parameters for the spin Hamiltonian are the

theoretical TC [25] and the local magnetic spin moment
(details of the method are given in Refs. [19,26]). The
volume expansion was taken from experiment [27].
A typical temperature dependence of 1 − αðTÞ is sketched
in Fig. 1 (thick solid line). The open circle in the lower left
part refers to full ferromagnetic saturation (denoted as FM
limit) and corresponds to a value of αðT ¼ 0 KÞ ¼ 1,
whereas the case of fully disordered spins (i.e., complete
absence of long-and short-range order) shown in the upper
right part of the figure (PM limit) corresponds to a value

of αðT → ∞Þ ¼ 0. The curvature of αðTÞ for inter-
mediate temperatures is directly related to the well-known
lambda-shaped magnetic contribution to the specific heat
capacity [10].
In Fig. 2 we compare our computed phonon dispersion

(red to orange solid lines in the right panel) with the neutron
scattering experiments (filled circles) performed in
Ref. [11]. The results correspond to three different temper-
atures 773, 1043, and 1173 K representing the relevant
magnetic scenarios: T < TC, T ¼ TC, and T > TC. The
highest temperature is just below the bcc to fcc transition at
1185 K. The light-gray shaded area indicates the difference
between the two limits of completely ordered (FM) and
completely disordered (PM) magnetic spins. The largest
impact of magnetic order (i.e., largest light-gray area) is
observed for the energetically lower transverse N-Γ branch,
consistent with previous findings [14–16]. The temperature
dependent phonon spectra computed with the present
method lie constantly in-between the two theoretical limits,
i.e., always within the gray shaded area, and show in
general a very good agreement with the experimental data.
An important observation is the relatively large value of
αðT ¼ 1.1TCÞ ¼ 0.39 at the high temperature of 1173 K.
This means that the magnetic short-range order is signifi-
cant even considerably above TC (see “SRO” sketch in
Fig. 1). The fact that α is still far away from zero at this
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FIG. 2 (color online). Phonon density-of-states (DOS) and
phonon dispersion of bcc Fe at three different temperatures.
Symbols indicate experimental data obtained by neutron scatter-
ing experiments [11]. The light-gray shaded area within the
phonon dispersion plots indicates the range between α ¼ 1
(FM limit) and α ¼ 0 (PM limit). The orange to red thick lines
indicate the theoretical predictions for the corresponding α value
(given to the right). The left panel shows the theoretical DOS
(colored) and the DOS obtained by fitting the neutron spectra by a
Born—von Kármán fit [28] (dark gray shaded area).

PRL 113, 165503 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

17 OCTOBER 2014

165503-3



temperature explains the unexpected observation that the
temperature-dependent phonon spectrum at 1173 K (red
lines) is still significantly larger than the one computed
within the PM limit (lower black solid lines). The impor-
tance of magnetic short-range order on thermodynamic
properties has been previously discussed [19] and is
consistent with recent results obtained by Ruban and
Razumovskiy [15] using the spin-spiral approach.
Comparing absolute phonon frequencies at a fixed

temperature as in Fig. 2 is not very well suited for revealing
the performance of our proposed methodology. The DFT
itself has an inherent difficulty describing absolute phonon
frequencies accurately due to the exchange-correlation
approximation [29]. For example, for the PBE-GGA
exchange-correlation functional used here, the Γ-N trans-
verse phonon branch is known to be overestimated com-
pared to experimental data [17]. This deficiency is already
apparent at T ¼ 0 K and does not imply a shortcoming of
the present methodology which focuses on the temperature
dependence. We therefore compare the changes in phonon
energy with temperature (relative to T ¼ 0 K) to the
temperature trends in the experimentally observed phonon
energies, rather than using the absolute values.
Figure 3 shows the comparison for a representative set

of q points and phonon branches. The neutron scattering
experiments in Ref. [11] provide a detailed temperature
dependence for two q points. Our recently performed
phonon density of states measurements have been analyzed
by Born—von Kármán (BvK) analysis to provide more
detailed temperature trends [12]. The optimized BvK
parameters permit the calculation of phonon frequencies
at any q point. For branches where neutron-scattering
experimental data are available (filled black squares), our

experimental BvK fitted frequencies (open black circles)
agree well.
The temperature dependence of our theoretical calcula-

tions (red lines) is in excellent agreement with experiment in
all cases. In addition to the complete theoretical temperature
dependence, we also show the ferromagnetic frequencies
(dashed red lines) which inherit their temperature depend-
ence from the quasiharmonic approximation. In some cases
(e.g., for the 1=3[qq2q] T1 point) the temperature depend-
ence is dominated by the quasiharmonic changes and
magnon-phonon coupling is negligible. For other regions
(e.g.,N − T2 point) the magnon-phonon coupling is strong,
in fact much stronger than the quasiharmonic dependence,
demonstrating that employing the introduced coupling
scheme is indispensable. The large softening of these modes
is directly linked to a strong decrease in the elastic constants,
which are involved in the structural transformation path
from bcc to fcc [14,16]. As mentioned above, experimental
analysis suggests explicit anharmonic contributions to be
an order of magnitude smaller compared to the observed
phonon softening [12]. Nevertheless, explicit DFT studies
including anharmonic and magnetic effects, such as DLM
molecular dynamics, are attractive but so far lacking for bcc
Fe. A recent application to CrN revealed a good agreement
between SSA and DLM molecular dynamics [30,31].
In conclusion, we developed an efficient and accurate

method to compute interatomic forces at arbitrary magnetic
temperatures. The method couples the recently proposed
spin-space averaging formalism with a quantum mechanical
spin Hamiltonian for the magnetic subsystem. We showed
that the energetics and temperature dependence of the
magnetic subsystem can be decoupled from the much more
computationally demanding DFT force constant calcula-
tions. Combining numerically exact quantum Monte Carlo
simulations for the magnetic spin system with highly
accurate force constant calculations, we find an excellent
agreement between theory and a large set of experimental
data for the temperature dependence of phonon frequencies
in bcc Fe. If applied to more complex structures, the
limitation of the explicit force computations to two magnetic
states (the ferro-and paramagnetic configurations) might be
insufficient. Specifically, an extension would be required in
systems with locally preserved magnetic order above the
global magnetic transition temperature (e.g., within extended
defects). Finally, we note that the method developed here
to investigate effects of magnon-phonon coupling is not
restricted to bcc Fe. It will be interesting to apply it to
other magnetic structures (e.g., antiferromagnets) or more
complex magnetic alloys, and to compute thermodynamic
properties such as, e.g., magnon-phonon contributions to
thermal expansion. It is appealing to apply similar strategies
to investigate the impact of substitutional SRO on the atomic
motion by coupling, e.g., energetics ofMonte Carlo—cluster
expansion techniques with force computations of chemically
ordered and disordered alloys.
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FIG. 3 (color online). Temperature dependence of phonon
frequencies for different modes comparing theoretical (solid
red lines) with experimentally deduced frequencies (open circles)
[12]. Dashed red lines show the ferromagnetic quasiharmonic
results (no phonon-magnon coupling). Where available, neutron
scattering data from Ref. [11] are included (filled black squares).
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