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The Letter draws the attention to the spatiotemporal symmetry of various vectorlike physical quantities.
The symmetry is specified by their invariance under the action of symmetry operations of the nonrelativistic
space-time rotation group Oð3Þ × f1; 10g ¼ O0ð3Þ, where 10 is a time-reversal operation, the symbol ×
stands for the group direct product, and O(3) is a group of proper and improper rotations. It is argued that
along with the canonical polar vector, there are another seven symmetrically distinct classes of stationary
physical quantities, which can be—and often are—denoted as standard three-component vectors, even
though they do not transform as a static polar vector under all operations of O0ð3Þ. The octet of
symmetrically distinct “directional quantities” can be exemplified by two kinds of polar vectors (electric
dipole moment P and magnetic toroidal moment T), two kinds of axial vectors (magnetization M and
electric toroidal moment G), two kinds of chiral “bidirectors” C and F (associated with the so-called true
and false chirality, respectively) and still another two bidirectors N and L, achiral ones, transforming as the
nematic liquid crystal order parameter and as the antiferromagnetic order parameter of the hematite crystal
α-Fe2O3, respectively.
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Physical quantities defined by a magnitude and an
oriented axis in 3D space are often represented by three-
component Euclidean vectors. Frequently, polar and axial
(or pseudo-) vectors are distinguished, depending on
whether they change their sense or not, respectively, upon
the operation of spatial inversion (parity operation 1̄) [1–4].
For classification of temporal processes or magnetic
phenomena of a vectorial nature, the action of the time-
inversion operator (10) can be used. For example, magneti-
zationM and magnetic field vector H are “time-odd axial”
vectors (preserved by the 1̄ operation but changing their
sign under the 10 operation); electric polarization P or
electric field E are “time-even polar” vectors, while
other quantities, like velocity v or toroidal moment T,
are “time-odd polar” vectors [1–6]. The two inversion
operations generate an Abelian (commutative) group of
four elements f1; 1̄; 10; 1̄0g with four one-dimensional
irreducible representations (irreps); the symmetry opera-
tions of this group allow us to classify these vectors into
four categories (see Table I) [1–4].
The aim of this Letter is to emphasize that there are

another four types of quantities, which are also defined by a
magnitude, an axis, and a geometrical sign, and which are,
also, often associated with three-component Euclidean
vectors, but which possess a different spatiotemporal sym-
metry than the examples given in Table I. We are going to
specify, here, all eight types of “directional quantities” (i) by
describing their transformation properties under the action of
the elements of the nonrelativistic space-time rotation group
Oð3Þ × f1; 10g ¼ O0ð3Þ (where the symbol × stands for
group direct product and O(3) is a group of proper and
improper rotations), (ii) by enumerating the associated

limiting groups defining their symmetry invariance, and
(iii) by providing several examples of each case. We shall
also briefly discuss possibilities and difficulties with the
extension of formal algebraic operations. Simultaneous
considerations about all eight different types of such direc-
tional quantities can be useful in various areas of physics.
Basic symmetry argument.—These eight symmetrically

different species are presented pictographically in Fig. 1.
Why do we have just eight of such quantities? Let us
consider any stationary physical quantity X (attached to a
physical object), which simultaneously defines a two-valued,
geometry-related sign, a nonnegative magnitude, and a
unique 1D linear subspace of 3D Euclidean space (the axis
of this quantity), but nothing more. Since the quantity X
defines a unique axis in space, the symmetry of X can be
classified by those O0ð3Þ group operations that leave this axis
invariant. Such operations form an infinite subgroup of
O0ð3Þ that can be expressed as ∞=mm × f1; 10g, what can
be denoted as an ∞=mm10 or D0

∞h group [5,8–11].
Moreover, it is natural to postulate that the magnitude of
X (jXj ≥ 0) does not change under the operations of the
O0ð3Þ group. This implies that transformation properties of

TABLE I. Action of space (1̄) and time (10) inversion operations
on selected examples of vectorial quantities: 1 stands for the
invariance, −1 stands for the sign reversal[3,7,8].

1 1̄ 10 1̄0 Vectorial quantity Symbol

1 1 1 1 Electric toroidal moment G
1 −1 1 −1 Electric dipole moment P
1 1 −1 −1 Magnetic dipole moment M
1 −1 −1 1 (Magnetic) toroidal moment T
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X can be fully defined by specifying how its sign is changed
when elements of ∞=mm10 are applied to it. Since we
restrict ourselves only to the quantities for which the sign of
X can have only one of the two possible values, the
symmetry operation can either preserve the sign or change
it to the opposite one. In other words, the action of the
associated ∞=mm10 group operations consist of multipli-
cation of the geometrical sign of X either by 1 or by −1. In
terms of the theory of groups, this implies thatX transforms
as a one-dimensional (necessarily irreducible) representation
of the associated ∞=mm10 group. It is known that the
ordinary ∞=mm (D∞h) group has four distinct one-dimen-
sional irreps [12,13], so the ∞=mm10 (D∞h × f1; 10g) one
has twice as many of them. Therefore, the physical quantities
defined by a sign, a magnitude, and an axis can be classified
in eight symmetrically different categories.
Classification by irreps and basic examples.—The list of

all one-dimensional irrep of the ∞=mm10 group is given in
Table II. The first column gives the irreps label following the
convention used, e.g., in Refs. [12] and [13], respectively, the
last column contains a letter symbol used in Table III and in
Fig. 1. The remaining columns of Table II are associated
with the classes of symmetry elements of the ∞=mm10
group. There are various physical quantities having the listed
transformation properties. For example, polarization (P) and
magnetization (M) transform as A1uðΣþ

u Þ and mA2gðmΣ−
g Þ

irreps, respectively. The symbol T invokes the often
discussed toroidization or toroidal moment [6,16–19], even
though there are many other, more frequently used, quan-
tities that also transform as the mA1uðmΣþ

u Þ representation,
such as electric current, momentum or velocity of a particle,
and vector potential or the Poynting vector S ¼ E ×H. It is
clear from Table II that this “magnetic” toroidal moment T
has a different symmetry than the “electric” toroidal moment
G, the latter exploited, e.g., for characterization of electric
polarization vortex states of small ferroelectric particles
[20–22] or poloidal spin currents [23]. Recently, sponta-
neous magnetic toroidization T has been found, e.g., in

Ba2CoGe2O7 crystals [24], the G-type distortion has been
identified, e.g., in the “ferroaxial” structures of CaMn7O12

and RbFeðMoO4Þ2 crystals [25–27].
Let us note that G and M are symmetric with respect to

the perpendicular mirror plane operation m⊥, and P and T
are symmetric with respect to the parallel mirror plane m∥.
Thus, none of these quantities is chiral [33]. In fact, only
two irreps from Table II fulfill the group theoretical
condition of a chiral object (absence of improper rotation

FIG. 1. Pictographs of eight kinds of quantities defined by a
sign, a magnitude, and an axis. Letter symbols allow us to
identify each pictograph with the symmetry assignment given in
Tables I–III. Arrows in pictographs drawn with dashed lines
should be considered as indicating a stationary current or motion
(time inversion operation does change their sense), while arrows
in the pictographs drawn with full lines are time irreversible (as,
e.g., the electric polarization). Pictographs were inspired by
pictures employed for similar purposes in Refs. [5,14,15].

TABLE III. List of eight symmetrically distinct “arrow” quan-
tities and their transformation under three independent operations
∞=mm10ðD0

∞hÞ group attached to the axis. (m∥ stands for any
mirror plane operation parallel to the axis.) Last column indicates
limiting group describing the symmetry invariance of the quan-
tity. The symbol is derived from the international (Hermann-
Mauguin) symbol for the ordinary limiting group by appending
additional symbol 10 or 1, indicating whether the 10 operation
(alone) is or is not an element of the group, respectively. This
convention is used in this Letter in order to clearly distinguish the
symbols of the ordinary and the space-time symmetry groups, for
example, to distinguish the ordinary limiting group ∞=mm and
the (time-odd) space-time limiting group ∞=mm1.

1̄ 10 m∥ Limiting group

G Time-even axial 1 1 −1 ∞=m10
P Time-even polar −1 1 1 ∞m10
M Time-odd axial 1 −1 −1 ∞=mm01
T Time-odd polar −1 −1 1 ∞=m0m1
N Time-even neutral 1 1 1 ∞=mm10
C Time-even chiral −1 1 −1 ∞210
L Time-odd neutral 1 −1 1 ∞=mm1
F Time-odd chiral −1 −1 −1 ∞=m0m01

TABLE II. Characters of one-dimensional irreps for selected
elements of ∞=mm10ðD0

∞hÞ group. The extra dash symbol
identifies the operations combined with time inversion. For
example, m0

∥ stands for a mirror plane parallel to the axis of
infinite order, combined with the time-reversal operation. Irreps
are labeled similarly to that of the ∞=mm group [12,13,28], the
“m” in front of the irrep label indicates the antisymmetry with
respect to the time inversion, similarly to it is adopted for irrep of
crystallographic grey symmetry groups [9,29] of magnetically
ordered crystals [30–32].

Irrep E 1̄ m∥ 2⊥ 10 1̄0 m0
∥ 20⊥ Symbol

∞ ∞ ∞0 ∞0
2∥ m⊥ 20∥ m0⊥

A1gðΣþ
g Þ 1 1 1 1 1 1 1 1 N

A2gðΣ−
g Þ 1 1 −1 −1 1 1 −1 −1 G

A1uðΣþ
u Þ 1 −1 1 −1 1 −1 1 −1 P

A2uðΣ−
u Þ 1 −1 −1 1 1 −1 −1 1 C

mA1gðmΣþ
g Þ 1 1 1 1 −1 −1 −1 −1 L

mA2gðmΣ−
g Þ 1 1 −1 −1 −1 −1 1 1 M

mA1uðmΣþ
u Þ 1 −1 1 −1 −1 1 −1 1 T

mA2uðmΣ−
u Þ 1 −1 −1 1 −1 1 1 −1 F
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symmetry, such as center of inversion or mirror planes
[33]): A2u and mA2u. They are naturally suitable for
description of chiral directional quantities, as their geo-
metrical sign can reflect the sign of their enantiomorphism.
For example, a helix might be characterized by its axis, the
magnitude (given by the pitch of the helix), and a
geometrical sign, indicating whether the helix is right
handed or left handed. Such a chiral quantity C transforms
as an A2u irrep. As a beautiful example of the mA2u
quantity, (F) can be taken as the antiferromagnetic order
parameter of the linear-magnetoelectric chromite crystal
Cr2O5 [34,35]. This latter kind of chirality, reversible upon
time reversal, is sometimes called “false chirality” [33,36].
Finally, there are also two irreps symmetric with respect to

bothm∥ andm⊥ (L andN). The time-odd variant (L) can be
used to describe another type of directional antiferromag-
netic order parameter, e.g., in the hematite crystal α-Fe2O3

[35]. The fully symmetric (A1g) representation is perhaps the
most singular one. It can be associated with the so-called
director, exploited in the theory of liquid crystals to
characterize the spontaneously parallel spatial orientation
of rodlike molecules in nematic phases [37]. In this particular
case, there is no reason to define its geometrical sign.
However, there are other N-like quantities that do have a
sign. For example, a consistently defined Frank vector of a
wedge disclination [38–40] should allow us to distinguish
whether the disclination can be formed by removing or
inserting a material body adjacent to the plane of the cut. At
the same time, this disclination itself is invariant against all
operations of the ∞=mm10ðD0

∞hÞ group [38].
Classification in terms of symmetry invariance groups.—

Table II fully defines transformation properties of various
uniaxial quantities discussed above. For many purposes, it
is enough to consider only those symmetry operations,
which leave the quantity invariant [8,11,41]. Such oper-
ations form infinite subgroups of the∞=mm10 group. They
are listed for each irrep in Table III. The content of these
invariance groups can be easily figured out from the
international (Hermann-Mauguin-type) symbol [9], but
also from the pictographic symbols shown in Fig. 1.
In addition, each pictograph shows a segment indicating

the magnitude of the quantity and an arrow associated with
its geometric sign (see Figs. 1 and 2). Arrows in pictographs
drawn with dashed lines should be considered as indicating a
stationary current or motion (time inversion operation does
change their sense). This is the case of time-odd quantities
(L, M, T, F). In contrast, the arrows in pictographs drawn
with full lines should be considered as time-even (time
inversion operation does not change them, as they have a
grey-group [29] symmetry). These pictographs stands for the
time-even quantitiesN,G, P,C. Let us note that the P, T,N,
L quantities, symmetric with respect to the parallel mirror
plane operation m∥, have arrows only in the radial direction,
while m∥-antisymmetric quantities, G, M, C, F, all have
only tangential arrows (bend arrows should be understood as

drawn on a visible part of the outer lateral surface of a
coaxial circular cylinder.) One can also easily distinguish the
single-arrow pictographs of 2⊥-antisymmetric quantities G,
P, M, T (vectors) from all the double-arrow graphical
symbols standing for 2⊥-invariant quantities N, C, L, F,
which we call bidirectors.
Meaning of the geometric parity signs, bidirectors.—The

fact that the parity sign can be represented in this way
emphasizes its geometrical nature. Obviously, the strict
meaning of the parity sign of a physical quantity relies on
some convention, too. For example, the vector of the electric
dipole moment is taken as pointing towards the center of the
positive charge (and not the opposite), the arrow associated
with the velocity of a particle is drawn towards its future
position (and not the opposite), the sense of the electric
current refers normally to the velocity of the positive charges,
and the arrow in the pictograph standing for the magnetic
dipole moment is that of the equivalent positive stationary
electric current circulating around the indicated axis.
Another set of conventions is needed to facilitate the

algebraic representation of such quantities. Typically, a
polar vector is represented by three coordinates defined by
its scalar-product projections to an oriented set of three
orthonormal basis vectors. It is so practical that we tend to
represent all other quantities in a similar way.
In the case of vector quantities (those of Table I), such

algebraic representation is usually defined through the time
derivatives and vectorial products or equivalent rules. In fact,
this representation justifies the common usage of the simple
P-arrow pictograph for all other vector quantities of Table I.
For example, magnetic moment m of a current turn is
defined as a vector perpendicular to the turn and directed so
that the current observed from the end of vectorm envelops
the turn counterclockwise [42]. Therefore, the pictograph for
M (as well as for G and T) can formally be replaced by that
of P, and so, we often do that—even though these quantities
actually do have quite different symmetry (in fact, Fig. 1
could conveniently serve as a replacement table). Moreover,
this algebraic representation allows us to calculate any scalar
and vectorial products in the usual way. Interestingly,
vectorial products of vectors are vectors, and scalar products
of vectors transform as one of the four possible scalar species
[4] (time-even scalar σ, time-even pseudoscalar ϵ, time-odd
scalar τ, and time-odd pseudoscalar μ, see Table IV).

FIG. 2. Pictographs of same eight kinds of quantities as in
Fig. 1, but with an opposite sense.
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In the case of bidirectors, none of the SO(3) operations
can reverse their geometrical sign. It indicates the funda-
mental difficulty with representation of bidirectors by
three-component algebraic vectors. In fact, each of these
bidirector quantities transforms as an “antitandem”
arrangement of two vectors—as a couple (“dipole”) of
two opposite vectorsX1 andX2 (jX1j ¼ jX2j) arranged on
a common axis at some nonzero distance r21 ¼ r2 − r1.
Obviously,N transforms as an antitandem of two P vectors,
C as an antitandem of two G vectors, L as a T-vector
antitandem, and F as a M-vector antitandem. Therefore, a
bidirector can be represented by a simple “two-body” term
a12 ¼ X2 −X1. Here, it is assumed that the symmetry
operations act on both the vectors and their positions:
operations that change r21 to the opposite are actually
interchanging sites 1 and 2. The geometrical parity sign of
such antitandem quantities could be denoted as inward or
outward, depending on whether the vector X2 is parallel or
antiparallel to the vector r21, and so, its evaluation actually
requires knowing two quantities at a time, X2 and r21.
Having this in mind, a range of algebraic operations can,
nevertheless, be extended to all the above vectors and
bidirectors. For the sake of convenience, types of the
quantities obtained as vectorial cross products or as
multiplication by a scalar are given in Table V. Let us
also note that, from a symmetry point of view, the time
derivative acts, here, as a multiplication by the time-odd
scalar τ, so that, e.g., the time derivative of the bidirector L
transforms as the bidirector N and vice versa.
Classification of axes and concluding remarks.—In

general, an object may have a physical property trans-
forming as one the eight discussed cases only if the
symmetry invariance group of this object is a subgroup
of the limiting group of the corresponding quantity. For
example, macroscopic magnetization can exist only in
crystals belonging to 31 different Heesch-Shubnikov point
groups that are subgroups of ∞=mm01 group [3,41,43]. If
the axis of the limiting supergroup coincides with the
symmetry axis of the object, it is often named according to
the associated property (ferromagnetic axis, polar axis).
Other axes could be similarly labeled as toroidal, truly
chiral, falsely chiral, G axis, fully symmetric and so on.

The term vector is sometimes employed to describe
phenomena that have a bidirector symmetry. For example,
the so-called Burgers vector is widely used to characterize
screw dislocations, which are obviously nonpolar, truly
chiral (C-type) objects. Similarly, the antiferromagnetic
vector [34,35,44] is often used to describe the falsely chiral
(F-type) antiferroelectric order. On the contrary, the so-
called “chiral vector” or “vector chirality” [45–47] is
sometimes used to characterize cyclic spin arrangements
on spin loops, for example, in triangular antiferromagnetic
lattices, even if the spin arrangement happens to have
toroidal symmetry, which is “unidirectorial” but achiral
(similar to spin cycloids and Néel domain walls [48]).
Finally, it is well known that axial vector G can be

represented as a polar antisymmetric second-order tensor.
The bidirector quantities can also be classified within the
established tensorial calculus [1,4,49,50]. They correspond
to a special kind of second rank tensors, that was once
coined in Russian literature as the “simplest tensor” (i.e., a
symmetrical second rank tensor having in its canonical
form only a single nonzero element) [14]. In particular, an
N-type bidirector could be considered as dual to the
simplest time-even polar tensor, a C-type bidirector trans-
forms as the simplest time-even axial tensor, an L-type
bidirector as the simplest time-odd polar tensor, and an
F-type bidirector as the simplest time-odd axial tensor.
Nevertheless, we think that the unifying classification via

irreps of the limiting dihedral group∞=mm10 still provides
a very practical concept, applicable in various areas of
physics. In solid state physics, at least, the simple per-
spective, where vectors and bidirectors have equal legiti-
macy, might be useful when dealing with problems where
several such quantities are interacting, for classification of
long-wavelength excitations or structural components of
magnetoelectric multiferroic crystals [11,51–53], for
description of macroscopic properties of chiral objects
[54,55], or for symmetry classification of topological
defects in vectorial fields (for example, domain walls,
vortices or Skyrmions) [56,57]. In fact, we would like to
offer a more complete discussion of possible applications
of this concept in the future, and so, we would be grateful to
learn about other cases where this perspective could bring
some useful insight.

TABLE IV. Four scalar types [4] specified according to their
invariance under space-inversion and time-reversal operations
(time-even scalar σ, time-even pseudoscalar ϵ, time-odd scalar τ,
and time-odd pseudoscalar μ).

1̄ 10 Examples

σ 1 1 G:G, T:T, P:P, M:M, ∇P, mass, charge
ϵ −1 1 P:G, T:M
τ 1 −1 M:G, T:P, time
μ −1 −1 T:G, M:P, magnetic monopole

TABLE V. Look-up table of transformation properties of
vectorial products and scalar multiplications. The symbol ∼
has a meaning of “transforms as…,” the operations involving
bidirector quantities N, C, L, F are defined in the text.

A∼ G P M T N C L F

½G ×A� or ½σA�∼ G P M T N C L F
½P ×A� or ½ϵA�∼ P G T M C N F L
½M ×A� or ½τA�∼ M T G P L F N C
½T ×A� or ½μA�∼ T M P G F L C N
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