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Atomic comagnetometers are widely used in precision measurements searching for spin interactions
beyond the standard model. We describe a new 3He-129Xe comagnetometer probed by Rb atoms and use it
to identify two general classes of systematic effects in gas comagnetometers, one associated with diffusion
in second-order magnetic-field gradients and another due to temperature gradients. We also develop and
confirm experimentally a general and practical approach for calculating spin relaxation and frequency shifts
due to arbitrary magnetic-field gradients.
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Spin-dependent interactions are usedbymany low-energy
experiments searching for new physics. Such experiments
are often limited by noise and systematic effects associated
with the magnetic field. To reduce these effects, a number
of experiments rely on comagnetometers, first introduced
in [1], that use two different spin species to measure
magnetic fields in the same space and time. Examples of
such experiments include searches for electric dipole
moments of the neutron [2] and atoms [3,4], as well as
searches for violation of local Lorentz invariance [5–7] and
for new spin-dependent forces [8–11]. Comagnetometers
also find practical applications in inertial rotation
sensing [12,13].
Comagnetometers usually rely on fast atomic diffusion

so that both spin species sample the same average magnetic
field independent of its spatial profile. It is natural to
consider effects that limit this property. Some such effects
have been discussed in connection with neutron electric
dipole moments experiments [14–16]; however, we are not
aware of a general analysis in the gas-diffusion regime.
Theoretical methods for the analysis of frequency shifts and
spin relaxation due to magnetic-field gradients have
recently attracted renewed interest for applications in
precision measurements [17–23], expanding on earlier
work [24,25]. Substantial research on similar problems
in NMR is reviewed in [26].
In this Letter we use a 3He-129Xe comagnetometer

probed by Rb atoms to experimentally study the effects
of magnetic-field gradients and temperature gradients. We
find that second-order magnetic-field gradients cause shifts
in the ratio of the 3He and 129Xe precession frequencies
proportional to the third power of the gradient strength. We
develop a new general approach for analysis of frequency
shifts that does not rely on second-order perturbation theory
and that can describe effects proportional to higher powers
of the gradient strength. We expand spin polarization in
diffusion eigenmodes of the Torrey equation [27], calculate
the coupling matrix between the eigenmodes, and find its
eigenvalues after truncating high-order modes suppressed

by diffusion. This approach works for arbitrary relative size
of diffusion, gradient dephasing, and Larmor precession
time scales if the motion of atoms is in the diffusion regime.
A method similar to our approach is discussed in [28] for
calculating spin relaxation due to linear gradients.
We also describe the effect of thermal diffusion [29] on

comagnetometers, which, to our knowledge, has not been
considere3d before. It causes a gradient in the relative
concentration of the two spin species in the presence of a
temperature gradient and results in a linear sensitivity of
the spin-precession frequency ratio to the first-order
magnetic-field gradient in the direction of the temperature
gradient.
Comagnetometers using 3He and 129Xe, first introduced

in [30], are a natural choice for precision measurements
because both species have nuclear spin I ¼ 1=2 and long
spin coherence times. Previous experiments used inductive
pickup coils [3,5] or superconducting quantum interference
devices [11] to detect the dipolar magnetic field created by
polarized 3He and 129Xe atoms outside of the cell. We use
Rb atoms in the same cell to detect nuclear spins through
their Fermi-contact interactions, which enhances the dipo-
lar magnetic field by a factor of 5.6 for 3He [31] and of 490
for 129Xe [32]. However, spin interactions also cause shifts
of the nuclear spin-precession frequencies due to the Rb
polarization [33]. Therefore, our measurement procedure is
designed to suppress the polarization of Rb during the free-
precession measurement interval for nuclear spin. During
this interval we turn off the lasers interacting with Rb atoms
and apply a strong oscillating magnetic field at the Rb
Zeeman resonance frequency to suppress Rb polarization
[34] generated by spin exchange with 129Xe [35].
The measurements are performed in a spherical 1.88-cm

internal diameter cell made from GE180 aluminosilicate
glass with 3.2 atm 3He, 2.9 torr 129Xe, 70 torr N2, and a
droplet of natural abundance Rb with a small admixture of
K. The droplet is used to plug the cell stem at its opening to
prevent gas diffusion into the stem and improve cell
sphericity. The surface spin relaxation time is about
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50 sec for 129Xe and much longer for 3He. The cell is placed
in a five-layer μ-metal shield and is held by a G10 rod
attached to a three-axis translation stage outside of the
shield to control its position relative to the magnetic field
and gradient coils mounted inside the shield. The gradient
coils are calibrated by measuring the frequency of nuclear
spin precession as a function of cell position. A uniform
bias field of 2.4 mG generated by a stable current source is
applied in the ẑ direction. The cell is heated in a boron
nitride oven to about 125 °C by ac electric currents; a
separate stem heater is used to control the stem temperature
independently. We monitor the temperatures of the cell
stem, the bottom of the cell body, and the oven body with
T-type thermocouples. The experimental setup is shown in
Fig. 1(a).
We start by pumping Rb atoms for 20 min with a

circularly polarized beam tuned to the Rb D1 transition to

build up 3He and 3Xe polarization by spin exchange with
Rb [36]. Then the pump beam is blocked and a rf pulse is
applied in ŷ direction to tip both 3He and 129Xe spins by
π=2. The frequency of nuclear spin precession is deter-
mined from two measurement pulses separated by a time T
(30–50 sec) on the order of Xe T2 [37]. Each measurement
pulse uses a pump beam along the x̂ direction, whose
polarization is modulated between left and right circular
[38] at 200 Hz with an electro-optic modulator, and a
linearly polarized probe beam along the ẑ direction. We
measure the paramagnetic Faraday rotation of the probe
beam [39] caused by Rb atoms that experience a tilt of the
total magnetic-field direction due to the Fermi-contact
interaction with transverse polarization of the nuclear spins.
This measurement procedure minimizes Rb polarization
along the bias field. The probe optical rotation signal is
demodulated at 200 Hz by a lock-in amplifier before being
recorded. In between the two measurement pulses all lasers
are blocked, and we turn on a rf field along the x̂ direction
with an amplitude of 4.8 mG and frequency of 1.5 kHz to
depolarize Rb spins by saturating their Zeeman resonance.
After the second measurement pulse, we recycle the 3He
polarization by applying a π=2 pulse with an appropriate
phase to put 3He spins back along the bias field. It is
followed by a pulse of magnetic-field gradient to relax all
transverse nuclear spin components and 1 min of optical
pumping to build up the 129Xe polarization before the next
measurement cycle. Figure 1(b) shows the measurement
sequence and an example of the signal recorded during the
measurement pulse.
We fit the measured signals using the equation

θ ¼ AXee−ðt−tmÞ=τXe sin½ωXeðt − t0;XeÞ� þ bðt − tmÞ
þ AHee−ðt−tmÞ=τHe sin½ωHeðt − t0;HeÞ� þ c; ð1Þ

where tm is the center of the measurement pulse and t0;Xe
(t0;He) are the crossing-zero times of Xe (He). In each
measurement pulse, lasting about 5 sec, there are several
crossing-zero time points. We choose t0 in the first pulse to
be closest to the end of the pulse, and t0 in the second pulse
to be closest to the beginning of the pulse. The measure-
ment pulses are also adjusted to turn them on and off close
to the crossing-zero times for Xe. This minimizes the
perturbation in the Larmor frequency for Xe, which is more
sensitive to the presence of polarized Rb atoms. We find the
Larmor frequency from ω ¼ 2πN=Δt0, where Δt0 is the
difference of the t0 for the two measurement pulses, and N
is an integer number of precession periods in between. The
transverse spin relaxation times τXe and τHe are determined
from the ratio of the signal amplitudes in the two pulses.
The ratio between 3He and 129Xe Larmor frequencies is

g ¼ ωHe

ωXe
¼ γHeBþ ΩE

γXeBþ ΩE
; ð2Þ
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FIG. 1 (color online). (a) Top view of experimental setup. BE:
beam expander, PBS: polarizing beam splitter, PO: polarizer, PD:
photodiode, PEM: photoelastic modulator. (b) The sequence of
the pulsed operation and an example of the signal recorded during
the measurement pulse. (c) The fractional suppression of the Rb
backpolarization generated by spin exchange with 129Xe as a
function of the amplitude and frequency of the depolarizing field.
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where γ is the nuclear gyromagnetic ratio and ΩE is the
projection of the Earth’s rotation onto the bias magnetic-
field direction in the lab frame.
In Fig. 1(c) we show the dependence of the fractional

suppression of the Rb backpolarization by 129Xe on the
frequency and amplitude of the depolarizing Zeeman rf
field. The presence of this field slightly changes the
gyromagnetic ratios, γ0 ¼ γ0J0ðγ0Bd=ωdÞ [40], where J0
is the zero-order Bessel function, γ0 is the unperturbed
gyromagnetic ratio, and Bd and ωd are the magnetic-field
amplitude and frequency of the depolarization field.
This modification is different for 3He and 129Xe, and
introduces a constant change in the frequency ratio,
g0 ¼ g − 6.3 × 10−5. It is important that the depolarizing
field does not have a rotating component, which would
introduce a larger frequency shift. In a separate experiment
we investigated the use of a depolarization field at the
hyperfine resonance frequency of isotopically enriched 39K
atoms. This produces a similar suppression of electron
polarization without a significant effect on nuclear spin-
precession frequencies.
Frequency shifts due to linear magnetic-field gradients

were first considered in [24] using second-order perturba-
tion theory. Their analysis shows that the frequency ratio g
does not change up to the second order in the gradient
strength if the Larmor frequency is much faster than the
diffusion time across the cell, ω ≫ D=R2, where D is the
diffusion constant and R is the cell radius. This condition is
well satisfied in our experiment. However, in practical
experiments, the field gradients are usually dominated
by higher-order terms, either due to field coils or local
magnetic impurities. To analyze higher-order gradients and
higher powers of gradient strengths we developed a new
method for calculating frequency shifts and relaxation rates
in the gas-diffusion regime. We start with the Torrey
equation [27] for the magnetization vector M,

∂M=∂t ¼ γM × BþD∇2M: ð3Þ
In a spherical cell the magnetization is expanded in vector
spherical harmonics and spherical Bessel functions, while
the magnetic field is expanded in vector spherical harmon-
ics, assuming no magnetic field sources inside the cell,

Mðr; tÞ ¼
X

nljm

MnljmðtÞYl
jmðθ;ϕÞjlðklnr=RÞ; ð4Þ

BðrÞ ¼
X

lm

Blmð
ffiffiffiffiffiffiffi
4πl

p
=l!Þrl−1Yl−1

lm ðθ;ϕÞ: ð5Þ

Equation (3) is then converted to a system of linear
differential equations for MnljmðtÞ using orthogonality
and completeness of vector spherical harmonics and
spherical Bessel functions. The equations are truncated
at a maximum order in l and n because diffusion damps out
higher-order terms. The eigenvalues of the resulting matrix

give the decay rates and frequencies of the normal diffusion
modes. We evaluate the matrix symbolically as described in
the Supplemental Material [41] and then find the eigen-
values numerically for a given diffusion constant and
magnetic field specified by Blm. We verified that this
approach reproduces all results in [24]. It also remains
valid when the rate of gradient dephasing is larger than the
rate of diffusion across the cell, γ∇BR > D=R2, where the
perturbation theory in [24] breaks down. Spin relaxation on
cell walls can be incorporated by modifying the boundary
conditions used to determine the diffusion mode constants
kln, as described in [41]. However, in a spherical cell the
frequency ratio g is not affected by the surface relaxation if
it is isotropic; this is because the average of the magnetic
field over any spherical shell is equal to the field at the
center of the shell [44]. To experimentally test our approach
we measured the transverse spin relaxation rate due to
first- and second-order gradients, δBð1Þ

z ¼ G1z and δBð2Þ
z ¼

G2ðz2=2 − x2=4 − y2=4Þ. In Fig. 2 we plot the difference
between τ−1He (τ

−1
Xe) with and without the applied gradient. In

our cell the diffusion constant for Xe is dominated by
binary diffusion in He, while for He it is dominated by the
self-diffusion constant; both are inversely proportional to
the pressure of He. Using data from [45] we determine the
ratio of the two diffusion constants D3He=DXe−3He ¼ 3.38
at 125 °C, after correcting for the isotopic mass difference
between 3He and 4He. We checked the initial filling buffer-
gas pressure in the cell by measuring the pressure broad-
ening of the Rb D1 line, which was recently calibrated in
[46]. After correcting for the presence of N2, we find
D3He ¼ 0.64 cm2= sec for our temperature and pressure
based on data in [45]. There are no adjustable parameters in
the comparison with the model in Fig. 2. To further verify
our approach, we also extended the treatment in [24] to
calculate the transverse relaxation due to a longitudinal
gradient of order l, ∂lBz=∂zl, and find it agrees with
our approach for high l [41]. For l ¼ 2 we find
1=T2 ¼ 11γ2R6ð∂2Bz=∂z2Þ2=5880D. Relaxation of spin-
echo NMR signals due to quadratic gradients in one
dimension was also experimentally studied in [47].
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FIG. 2 (color online). Measurements of the transverse
relaxation rate for 3He and 129Xe due to linear (left panel) and
quadratic (right panel) magnetic-field gradients (points), together
with results of the matrix analysis (lines) with no adjustable
parameters.
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In Fig. 3 we show the shifts in the frequency ratio g due
to the second-order gradient G2. We find that the second-
order gradient causes a shift in g proportional to the third
power of the gradient strength. This effect is due to
nonuniform polarization of 3He and 129Xe spins caused
by spatial variation in the gradient relaxation rate resulting
in a shift of the “center of spin.” It cannot be described by
second-order perturbation theory approaches, and it can
cause systematic effects in precision measurements because
it is odd in the gradient sign. It is also very sensitive to the
position of the cell relative to the center of the gradient, as
illustrated in Fig. 3. From our model and dimensional
analysis we find that the fractional frequency shift δω=ω is
proportional to ðγ=DÞ2G3

2R
10=B0, and that the effect on

the frequency ratio g is suppressed in our case because
the ratio of the diffusion constants is relatively close
to γHe=γXe ¼ 2.75.
When studying the response of the frequency ratio g to

first-order gradients, we found that it is sensitive to the
temperature gradients across the cell. This effect can be
attributed to thermal diffusion—a gradient in the relative
concentration of 3He and 129Xe spins due to a temperature
gradient. The relative concentration gradient due to thermal
diffusion is given by [29]

dfXe
dr

¼ −αTfXefHe
1

T
dT
dr

; ð6Þ

where the relative concentrations are fXe ¼ nXe=ðnHeþ
nXeÞ, fHe ¼ nHe=ðnHe þ nXeÞ ≈ 1, and αT is the thermal
diffusion factor. A temperature gradient across the cell
causes a nonuniform density of both helium and xenon to
maintain a constant pressure, but for xenon the concen-
tration is further increased in colder regions due to thermal

diffusion. This causes a separation of the center of spin for
the two species and a shift in the frequency ratio g for a
linear field gradient parallel to the temperature gradient. In
a spherical cell in a uniform temperature gradient the
separation of the centers of spin is given by d ¼
αTRΔT=10T, where ΔT is the temperature difference
across the cell. The thermal diffusion coefficient for small
concentration of Xe in He is αT ¼ 1.06 [45], and we
calculate that for our conditions d ¼ 2.5 × 10−4ΔT cm=K.
Figure 4 shows the experimental measurements of the
changes in g due to a vertical linear magnetic-field gradient
∂Bz=∂y for different vertical temperature gradients. We
find that the sign of the shift changes with the sign of the
temperature gradient and agrees with the sign of thermal
diffusion. From the data we find d ¼ 2.0 × 10−4ΔT cm=K,
which is in good agreement with the calculation given
the uncertainty in the temperature gradient of the gas in
the cell.
In conclusion, we have described two new general

classes of systematic effects that affect gas comagnetom-
eters. One frequency shift is due to higher-order magnetic-
field gradients, which have not been previously
investigated, either experimentally or theoretically. We
developed a high-order method to calculate the effects of
field gradients, and we find that the frequency shift is
proportional to the third power of the gradient strength. The
second source of frequency shift is due to the thermal
diffusion effect, which causes gradients in the relative
concentration in the gases in the cell in the presence of a
temperature gradient, resulting in sensitivity to first-order
magnetic-field gradients. Identification of these systematic
effects will be important for future precision measurements
using comagnetometers, particularly for searches for
spin-gravity coupling [48] and other interactions where
signal reversal is difficult, as well as for their practical
applications.

This work was supported by NSF and DARPA.
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