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Beyond mean-field methods are very successful tools for the description of large-amplitude collective
motion for even-even atomic nuclei. The state-of-the-art framework of these methods consists in a
generator coordinate method based on angular-momentum and particle-number projected triaxially
deformed Hartree-Fock-Bogoliubov (HFB) states. The extension of this scheme to odd-mass nuclei is
a long-standing challenge. We present for the first time such an extension, where the generator coordinate
space is built from self-consistently blocked one-quasiparticle HFB states. One of the key points for this
success is that the same Skyrme interaction is used for the mean-field and the pairing channels, thus
avoiding problems related to the violation of the Pauli principle. An application to 25Mg illustrates the
power of our method, as agreement with experiment is obtained for the spectrum, electromagnetic
moments, and transition strengths, for both positive and negative parity states and without the necessity for
effective charges or effective moments. Although the effective interaction still requires improvement, our
study opens the way to systematically describe odd-A nuclei throughout the nuclear chart.
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Atomic nuclei are a prime example of finite-size, self-
bound quantal many-body systems. Their complex spectra
exhibit a large variety of excitation modes that can be
related to either collective or single-particle degrees of
freedom, or to coupling between both [1,2]. The sym-
metries of the Hamiltonian and the related quantum
numbers, chiefly angular momentum and parity, are the
means by which to classify and interpret the energy levels
and the transition probabilities between them.
To go beyond simple models requires the modeling

of the in-medium nucleon-nucleon interaction. We focus
here on methods based on an energy density functional
(EDF), which are widely used for the description of atomic
nuclei [3] and electronic systems [4]. Their simplest
realization is the self-consistent mean-field (SCMF)
method along the lines of the Hartree-Fock (HF) and
Hartree-Fock-Bogoliubov (HFB) schemes. In a SCMF
approach, correlations related to shape deformation and
pairing are incorporated at a moderate numerical cost,
but at the price of breaking symmetries of the nuclear
Hamiltonian. Such breakings prevent a detailed comparison
with experimental data. In particular, transition probabil-
ities between levels can only be estimated when making the
additional assumptions of the collective model [1,2].
To go a step further requires a so-called “beyond mean-

field model,” while taking into account correlations absent
in the SCMF. Two such extensions are the restoration of
symmetries broken by the mean field and the superposition
of different configurations by the generator coordinate
method (GCM). Such a multireference (MR) approach is

particularly well suited to describe shape coexistence and
shape mixing phenomena. As evidenced by many appli-
cations to even-even nuclei, this family of methods
describes well a large range of nuclear properties [5–11].
These extensions were until now limited to the study of
even-even nuclei. Already at the SCMF level, the descrip-
tion of odd-A nuclei [12–16] poses new difficulties.
Breaking a nucleon pair unavoidably lifts the time-reversal
symmetry of the HFB state, and several low-lying blocked
HFB states usually lie close in energy and have to be
calculated separately in a fully self-consistent manner to
determine the level ordering.
Here, we present the first results obtained with a gener-

alization of our method for even-even nuclei [8] to odd ones.
The MR basis is constructed from angular-momentum-
projected (AMP) and particle-number-projected (PNP)
self-consistently blocked triaxial one-quasiparticle (1qp)
HFB states. Having to consider several blocked states at
each deformation makes the calculation much larger than
state-of-the-art ones for even-even nuclei. The breaking
of time-reversal symmetry has important practical conse-
quences. One is that it makes the formal problems
[17–20] associated with defining the nondiagonal energy
kernels for standard parametrizations of the EDF even more
acute than in the case of even-even nuclei. These problems
are related to a violation of the Pauli principle when
constructing the EDF, and can be avoided by using the
same (density-independent) Skyrme Hamiltonian as par-
ticle-hole and pairing forces. For this purpose, we use the
recent SLyMR0 parametrization [21].
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We have chosen 25Mg as an example, i.e., a light
deformed nucleus exhibiting coexisting rotational bands
of both parities at low excitation energies [22], with band
heads interpreted as one-quasiparticle states [23]. The
adjacent even 24Mg nucleus has been the testing ground
for many implementations of the MR EDF method for
even-even nuclei [5–10].
In the past, angular-momentum projection for odd-A

nuclei has been mostly performed on HF or HFB states
constructed in small valence spaces [24–28]. A GCM
mixing based on parity and angular-momentum-projected
symmetry-unrestricted Slater determinants in a model
space of antisymmetrized Gaussian wave packets has been
carried out in the frameworks of antisymmetrized [29,30]
and fermionic [31] molecular dynamics.
Our method can be divided into four successive steps.

First, a set of “false HFB vacua” [12,32] is generated,
consisting of fully paired and time-reversal-invariance-
conserving nonblocked HFB states constrained to particle
numbers Z ¼ 12 and N ¼ 13. In its canonical basis, each is
given by jHFBfvðq1; q2Þi ¼

Q
k>0ðuk þ vka

†
ka

†
k̄
Þj−i, where

the single-particle states are chosen to conserve three point-
group symmetries [33], namely parity π, a signature, and a
time simplex, which leads to nucleon densities with triaxial
symmetry [34]. Thanks to a constraint on the mass quadru-
pole moment added to the HFB equations and parame-
terized by q1 and q2 as defined in [8], one sextant of the β-γ
plane with 0 ≤ γ ≤ 60° is covered.
These vacua, however, only serve to identify the

single-particle states next to the Fermi energy at each
deformation. In a second step, several one-quasiparticle
HFB states are then constructed from each false vacuum
by self-consistently blocking the most favored con-
figurations with the method described in Ref. [35]. In
its respective canonical basis, each has the structure
jHFBπ

1qpðq1; q2; jÞi ¼ a†j
Q

k≠j>0ðuk þ vka
†
ka

†
k̄
Þj−i, and

therefore each adopts the parity and signature of the
blocked single-particle state j. Whenever possible we
use the compact label μ≡ q1; q2; j to distinguish between
1qp states jHFBπ

1qpðμÞi that differ in any of the three
coordinates. There are two other nonequivalent sextants of
the β-γ plane that will not be considered here. For those, the
conserved signature is aligned with a different major axis of
the quadrupole tensor of the nucleus, leading to a slightly
different total energy of the 1qp states [14]. We also omit
3qp and higher multiquasiparticle states.
The 1qp states break several symmetries of the nuclear

Hamiltonian. The third step of our method restores the most
important ones for nuclear spectroscopy applications: the
proton (Z) and neutron (N) numbers, and the angular
momentum ℏ2JðJ þ 1Þ with z component ℏM,

jJπMκðμÞi ¼
XJ

K¼−J
fJ

πκ
μ;KP̂

J
MKP̂

NP̂ZjHFBπ
1qpðμÞi: ð1Þ

The indices for N and Z are dropped from jJπMκi as all
states are projected on N ¼ 13 and Z ¼ 12. The 1qp states
are developed into angular momentum eigenstates with z
component ℏK. Their weights fJ

πκ
μ;K are determined by

solving a Hill-Wheeler-Griffin (HWG) equation [2,36]

X

K0
ðHJπ

μ;K;μ;K0 − EJπ
κ IJπ

μ;K;μ;K0 ÞfJπκμ;K0 ¼ 0 ð2Þ

for each J on which the 1qp state can be projected,
where HJπ

μ;K;μ0;K0 ≡ hHFBπ
1qpðμÞjĤP̂J

KK0P̂ZP̂N jHFBπ
1qpðμ0Þi

and IJπ
μ;K;μ0;K0 ≡ hHFBπ

1qpðμÞjP̂J
KK0P̂ZP̂N jHFBπ

1qpðμ0Þi are
the Hamiltonian and norm kernels, respectively. As a
consequence of the signature symmetry of the
jHFBπ

1qpðμÞi, components with �K are linearly dependent.
The redundant ones are removed by a transformation, as
proposed in Ref. [37]. For each value of J, one obtains in
this way a spectrum of up to ð2J þ 1Þ=2 states of energy
EJπ
κ labeled by an index κ.
In the final step, projected states obtained from different

1qp states are mixed by the GCM,

jJπMξi ¼
XΩπ

μ¼1

X

κ

fJ
πξ

μ;κ jJπMκðμÞi; ð3Þ

whereΩπ is the number of different 1qp states jHFBπ
1qpðμÞi

of given parity π that are projected.
The weights fJ

πξ
μ;κ are determined by a HWG equation

similar to Eq. (2), where the energy and norm kernels are now
calculated using the jJπMκ0ðμ0Þi states, andwhere theEJπ

ξ are
the energies of the mixed projected states (3). As the
Hamiltonian commutes with parity, the energy kernels
between states of opposite parity are zero, such that
they do not mix in the GCM. For each value of J, the
HWG equation is thus solved separately for positive- and
negative-parity states. Having determined the fJ

πκ
μ;K and fJ

πξ
μ;κ

coefficients, other observables can be computed aswell [6–8].
The single-particle states are discretized on a Cartesian

coordinate-space mesh in a 3D box. The mean-field
calculations are performed using an update of the code
described in [34,35]. The projection operators involve
rotations and integrations over gauge angles for PNP
and Euler angles for AMP. These are discretized with 9
points in the interval [0, π] for PNP for protons and
neutrons separately, and 24 × 40 × 24 points for the
Euler angles in the full integration interval α ∈ ½0; 2π�,
β ∈ ½0; π�, γ ∈ ½0; 2π�. The remaining symmetries of the
1qp states allow for a reduction to 1=16 of the number of
spatial rotations to be explicitly carried out. When calcu-
lating the GCM kernels, derivatives and the spatial rotations
are carried out with Lagrange-mesh techniques [38].
As mentioned above, the MR calculation described here

could not be safely carried out with a standard Skyrme EDF
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because of the nondiagonal energy kernels HJπ
μ;K;μ0;K0

becoming ill defined [17–20]. Instead, the energy has to
be calculated as the matrix element of a (nondensity-
dependent) many-body Hamiltonian without any approxi-
mation or simplification. The early parametrization SV,
used along these lines in Refs. [39,40], is repulsive in the
pairing channel [21]. Here, we use the Skyrme paramet-
rization SLyMR0 [21]. It acts both as a particle-hole and a
pairing force. SLyMR0 consists of standard central and
spin-orbit two-body terms with gradients that are supple-
mented by gradientless three-body and four-body terms. Its
parameters have been adjusted to provide attractive pairing
of a reasonable size and to avoid instabilities in all spin-
isospin channels [21]. Being overconstrained by these two
conditions, its overall predictive power for nuclear bulk
properties is limited [21]. Also, its very low isoscalar
effective mass of m�

0=m ¼ 0.47 leads to a single-particle
spectrum that is too spread out. The Coulomb energy
kernels for the GCM are also calculated with exact
exchange and pairing contributions. In the HFB calcula-
tions, however, where preserving the Pauli principle is less
critical, the Slater approximation is used for the exchange
term and the Coulomb pairing energy is neglected. We use
a soft pairing cutoff when solving the HFB equations [35]
in order to suppress the divergence of the HFB equations
when using contact interactions [41]. By contrast, we omit
such a cutoff when calculating the GCM energy kernels, as
it would introduce a slight violation of the Pauli principle
and thereby lead to the problems with nondiagonal energy
kernels discussed in [17–20]. The HFB calculations are
augmented by a Lipkin-Nogami scheme that enforces the
presence of pair correlations in most 1qp states.
The Hamiltonian and other operator kernels are evalu-

ated with the technique presented in Refs. [42,43]. The
corresponding overlap kernels, including their sign, are
calculated with the Pfaffian-based expression of Ref. [44].
The energy surfaces corresponding to the first steps of

our calculations are plotted in Fig. 1. Figure 1(a) corre-
sponds to the false vacuum of 25Mg. The surface is very
similar to the one obtained from HFB calculations for
24Mg, with a minimum corresponding to a well-deformed,
slightly triaxial, prolate shape. Figures 1(b) and 1(c) display
the surfaces corresponding to the lowest nonprojected 1qp
configurations for positive and negative parity, respectively.
The configuration giving the lowest energy is selected for
each deformation. Compared to Fig. 1(a), the minima are
shifted, which reflects how the blocked single-particle
levels approach and depart from the Fermi energy for
neutrons. Figure 1(d) corresponds to the third step of our
method for Jπ ¼ 5=2þ. The surface is formed by the K-
mixed states jJπMκðq1; q2; jÞi projected on N and Z, with
the lowest energy for a given intrinsic deformation (q1, q2),
respectively. Figures 1(e) and 1(f) display the same result
for Jπ ¼ 3=2þ and 3=2−. The deformation corresponding
to the lowest energy is different for most Jπ values, and it

does not coincide with the one of the lowest nonprojected
blocked 1qp state. As found in similar calculations for light
even-even nuclei [8–10], AMP shifts the minimum to larger
intrinsic deformation.
Let us now discuss the full calculation where the

projected states jJπMκðq1; q2; jÞi with the same value of
Jπ and M, but different values for (q1, q2), j, or κ, are
combined for a complete GCM calculation. Sampling the
deformations q1 and q2 in steps of 40 fm2 and considering
several 1qp states at each combination, we have constructed
a basis of Ωþ ¼ 100 1qp configurations of positive parity
and Ω− ¼ 60 1qp configurations of negative parity, respec-
tively. After elimination of all redundant states, the
Hamiltonian is finally diagonalized in a space of 226 K-
mixed projected states for Jπ ¼ 5=2þ, 149 for Jπ ¼ 3=2þ,
and 106 for Jπ ¼ 3=2−, to give a few examples. The large
number of 1qp configurations makes it possible to analyze
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FIG. 1 (color online). Energy surface of the false vacuum (a),
surfaces of the lowest energy found at a given deformation among
the several nonprojected 1qp states of positive (b) and negative
(c) parity, and surfaces of the lowest energy found at a given
deformation after projection on N, Z, and Jπ ¼ 5=2þ (d), 3=2þ
(e), and 3=2− (f) and K mixing among the 1qp states. All energies
are displayed as a function of β and γ calculated from the mass
density distribution of the 1qp state as defined in Ref. [8]. The
deformation energy is relative to the minimum of each surface,
indicated by a black dot. The offset of the minimum of each
surface relative to the one of false vacua is indicated in the upper
corner of each sextant.
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the calculation’s convergence. When adding the states to
the GCM in the order of the energy of the 1qp state they are
projected from, the last 20 states being considered for each
parity only add about 20 keV to the energies of the low-
lying states, with their energy differences changing even
less. This smooth convergence could only be achieved by
using a Hamiltonian in the GCM.
The GCM gives a quite satisfying description of the low-

lying levels, see Fig. 2: the overall band structure is
reasonably well reproduced, including the excitation

energy of the lowest levels with negative parity. Band 2,
however, has an incorrect signature splitting and its band
head is computed somewhat too low in energy. Within each
band, the spectrum is slightly too spread out, as is also
found for even-even nuclei. This can be corrected for by
projecting HFB states cranked to finite angular momenta,
which will be discussed elsewhere. Computed moments
23.25 e fm2 and −1.054 μN reproduce the experimental
values of 20.1ð3Þ e fm2 [22] for the spectroscopic quadru-
pole moment and −0.85545ð8Þ μN [22] for the magnetic
moment of the ground state reasonably well using the
bare charges and magnetic moments for the nucleons. The
BðE2Þ and BðM1Þ values for transitions within the ground-
state band are similarly well described, see Fig. 3, with the
BðE2Þ values being again slightly overestimated. We
attribute this to a single-particle spectrum for SLyMR0
that is too spread out, pushing the dominant intrinsic
configurations to slightly too-large deformations.
Despite its deficiencies for bulk properties such as

masses [21], SLyMR0 gives a very reasonable description
of the spectroscopy of 25Mg. Still, there is an urgent
need for effective Hamiltonians that attain at least the
predictive power of the current standard EDFs. Their
construction will require higher-order terms in the effective
interaction [45,46].
The beyond mean-field method described here will be a

useful tool to study ground-state correlations and spectros-
copy of odd-A nuclei. But let us also stress that the method
that we have introduced has an interest beyond the study of
odd nuclei. The ability to study isotopic (isotonic) chains
including all numbers of neutrons (protons) will enlarge the
perspective on the systematics of global nuclear properties.
Examples concern the evolution of signatures of shell
effects and pairing correlations with nucleon number.
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