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We construct a model of inflation based on a low-energy effective theory of spontaneously broken global
scale invariance. This provides a shift symmetry that protects the inflaton potential from quantum
corrections. Since the underlying scale invariance is noncompact, arbitrarily large inflaton field displace-
ments are readily allowed in the low-energy effective theory. Aweak breaking of scale invariance by almost
marginal operators provides a nontrivial inflaton minimum, which sets and stabilizes the final low-energy
value of the Planck scale. The underlying scale invariance ensures that the slow-roll approximation remains
valid over large inflaton displacements, and yields a scale invariant spectrum of perturbations, as required
by the cosmic microwave background observations.
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Inflation is the leading contender for the explanation
of why the Universe is so big, old, and smooth [1–3]. It also
predicts the initial spectrum of almost scale invariant
density fluctuations [4]. These inflationary fluctuations
excellently fit the cosmic microwave background (CMB)
measurements by WMAP and Planck. Very recently, the
BICEP2 experiment claimed an observation of CMB
polarization [5], which fit the spectrum of primordial
gravity waves [6] that can also be created during inflation.
The BICEP2 results, if due to primordial gravity waves,
point towards large field models of inflation, to explain the
claimed large tensor-to-scalar ratio. Such models involve
large field changes Δφ > MPl during inflation and need a
very flat and small potential in Planck units [3]. They are
difficult to realize because at large field values, the quantum
corrections can be large. However, setups using a pseudo-
Goldstone boson of some weakly broken symmetry as the
inflaton [7,8] have an approximate shift symmetry which
protects the potential from large corrections [9–11]. The
inflaton’s shift symmetry is a “phase rotation,” and the
inflaton is necessarily a pseudoscalar (essentially, a type of
axion). Here, we argue that an alternative is to use a scalar
Goldstone boson for a noncompact, spontaneously broken
global scale symmetry, the dilaton, as the inflaton. This
automatically accommodates large field variations since the
symmetry and the vacuum manifold are noncompact. Scale
invariance forbids a direct Einstein-Hilbert term in the
action, so the leading operator controlling graviton dynam-
ics is a dilaton-graviton coupling Φ2R. The Planck scale
arises from the dilaton vacuum expectation value (VEV)
hΦi ∼MPl. A fully scale invariant theory allows only a
quartic dilaton self-coupling, without a nontrivial mini-
mum, protected from loop corrections by an effective shift
symmetry which arises from the underlying scale sym-
metry. An inclusion of small explicit breaking terms yields
a nontrivial dilaton VEV at large but finite values OðMPlÞ

with a very flat potential. All corrections to the inflaton
potential will be suppressed by the small parameters
characterizing the sizes of the explicit breaking terms.
Our main assumption is that the low-energy effective

Lagrangian is approximately scale invariant. Global scale
transformations are given by xμ → x̄μ ¼ e−λxμ, or equiv-
alently, gμν → e−2λgμν. These have the effect R → e2λR
on the scalar curvature, while generic operators transform
as O → eλΔO, where Δ is the scaling dimension of O. The
spontaneous breaking of scale invariance is parametrized
by the dilaton field Φ, which is the Goldstone boson for
broken scale invariance and which is the inflaton in our
setup. Once the dilaton is stabilized by the small explicit
breaking terms, its VEV will give rise to the effective
Planck scale. We will assume that initially the dilaton is
displaced far from its minimum and that its rolling to its
minimum drives inflation.
The general scale invariant Lagrangian that we will be

considering is given by

L ¼ ffiffiffiffiffiffi
−g

p �
~ξΦ2R −

1

2
ð∇ΦÞ2 − VðΦÞ

�

þ ΔLðgμν;ΦÞ þ LMðgμν;Φ;ΨÞ; ð1Þ

where R is the Ricci scalar and ~ξ is a dimensionless
parameter. Note that scale invariance forbids the presence
of the usual Einstein-Hilbert term. The potential VðΦÞ will
be specified below, but exact scale invariance would require
VðΦÞ ¼ α2Φ4, with a constant α. Scale invariance forbids
large corrections to the dilaton potential, hence eliminating
the η problem. This remains valid even after including the
loop corrections from the interactions with other fields, as
long as these fields do not violate scale invariance explic-
itly. This will be the case if the masses of the fields
interacting with the dilaton originate from the dilaton VEV
itself, in which case the resulting corrections will just
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renormalize the coefficient of the Φ4 coupling. In order to
recover Einstein gravity, the potential must give rise to a
nonvanishing VEV for Φ: hΦi2 ¼ M2

Pl=2~ξ. This requires
the presence of small explicit breaking terms, whose
corrections to the dilaton potential will nevertheless be
suppressed by the small parameter characterizing the
magnitude of the explicit breaking. This follows since
the theory—including the regulator—has a manifest (non-
linearly realized) shift symmetry, which arises from scale
invariance after field redefinitions. This also guarantees that
all the perturbative graviton loop corrections are completely
under control, much like in the case of axion monodromy
[11] (see also Ref. [12]). ΔLðgμν;ΦÞ contains operators
with extra derivatives and inverse powers of Φ; for
example, the Weyl term involving R2 would be in this
part of the Lagrangian. LMðgμν;Φ;ΨÞ contains any other
dynamics involving fields collectively denoted by Ψ [such
as the standard model (SM) fields], which may or may not
be coupled to Φ (but they certainly couple to the metric in
order to preserve Lorentz invariance). We will discuss the
role of these two terms later.
In order to understand the inflationary dynamics of this

system, it is convenient to perform a Weyl transformation
of the metric and go to the Einstein frame gμν → Ω2gμν,
where Ω ¼ ΩðxÞ satisfies Ω2 ~ξΦ2 ¼ M2

Pl=2. The rescaled
Lagrangian is given by

L ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∇φÞ2 − VðφÞ

�

þ ΔL(Ω2ðφÞgμν;ΦðφÞ)þ LM(Ω2ðφÞgμν;ΦðφÞ;Ψ);

ð2Þ

where VðφÞ ¼ M4
Pl

4~ξ2
V½ΦðφÞ�
Φ4ðφÞ . The relation between the original

dilaton and the Einstein frame inflaton φ is given by [with
boundary condition Φðφ ¼ 0Þ ¼ hΦi]

ΦðφÞ ¼ hΦi exp
� ffiffiffi

ξ
p

φ

MPl

�
;

1

ξ
¼ 1

2~ξ
þ 6: ð3Þ

In this frame, the original scale invariance of the theory will
manifest itself in a shift symmetry for the inflaton

φ → φ̄ ¼ φþMPlffiffiffi
ξ

p λ: ð4Þ

Thus, Eq. (2) can be thought of as the nonlinearly realized
Lagrangian for the spontaneously broken noncompact
group of scale transformations, where the above shift
symmetry is the remnant of the original scale invariance.
The Einstein-Hilbert term is shift symmetric, since it does
not contain φ. The kinetic term for the scalar is shift
symmetric because it contains only derivatives. The scalar
potential term VðφÞ becomes a constant (if we started out
with a quartic Φ4 in the Jordan frame, as required in the

absence of explicit breaking terms). The terms in ΔL
already contain derivatives of φ only and thus will
obviously be shift invariant. The only nontrivial terms
are those that involve matter fields coupled to φ in LM:
here, explicit powers of e

ffiffi
ξ

p
φ=MPl will appear from the Weyl

transformation of the metric, seemingly giving rise to
nonderivative interactions. The important point is that such
factors will also be present in the kinetic terms of the matter
fields: once the matter fields are suitably redefined in order
to canonically normalize their kinetic terms, the inflaton
will again appear only derivatively coupled, obeying the
shift symmetry. Hence, all the terms in Eq. (2) which were
originally exactly scale invariant remain invariant under the
shift symmetry.
Notice also that, given φ ¼ ðMPl=

ffiffiffi
ξ

p Þ logðΦ=hΦiÞ, if the
dilaton field starts out at small values Φ0 ∼ 0 far from
the minimum of the potential and moves out to hΦi ∼MPl,
the field space range for φ can be larger than MPl without
ever leaving the regime of validity of the effective theory.
For example, assuming Φ0 ∼ 10−15hΦi ∼ TeV, we find
jΔφj ∼ 15MPl, a seemingly super-Planckian field excursion
in the Einstein frame.
The scale invariant α2Φ4 dilaton potential yields a

completely flat constant potential independent of φ in
the Einstein frame. This is again a consequence of the
shift symmetry [Eq. (4)]. However, for a completely flat
potential, the VEV hΦi (and the Planck scale) remain
undetermined. One needs to systematically incorporate
small explicit breaking terms into the Lagrangian which
can fix the dilaton VEV at large values. Such explicit
breaking terms could possibly originate from the inter-
actions with additional matter contained in LM; in particu-
lar, they could potentially be due to interactions with the
SM fields. As long as the explicit breaking induced by
these terms is weak, the shift symmetry [Eq. (4)] will
remain approximately valid and will continue to protect the
low-energy theory [Eq. (2)] from large corrections. We now
consider several simple but well-motivated forms of poten-
tials that systematically incorporate small explicit break-
ings of scale invariance, with a vanishing cosmological
constant at the minimum (notice that scale invariance does
not in itself say anything about the cosmological constant
[13]). More examples which yield arbitrary power-law
inflaton potentials protected by approximate shift sym-
metry are discussed in Ref. [14].
The first example takes the effect of a single marginally

relevant operator with dimension 4 − ϵ into account. This
type of potential [15,16] naturally shows up in warped
extra dimensions [17] after modulus stabilization via the
Goldberger-Wise mechanism [18,19] (which indeed cor-
responds to turning on a marginally relevant operator in the
dual conformal field theory language). The resulting
approximately scale invariant potential is

VðΦÞ ¼ Φ4ðαþ βΦ−ϵÞ2; ð5Þ
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where ϵ corresponds to the anomalous dimension of the
operator breaking scale invariance ϵ ≪ 1. This potential
is minimized at hΦi ¼ ð−α=βÞ1=ϵ, where it vanishes to
reproduce an (approximately) zero vacuum energy density
at the end of inflation. The inflaton potential in the Einstein
frame reads

VðφÞ ¼ M4
Pl

4

α2

~ξ2
ð1 − e−ϵ

ffiffi
ξ

p
φ=MPlÞ2: ð6Þ

This is a very flat potential, as long as ϵ ≪ 1: a result of the
small explicit breaking of scale invariance. Note that the
form of the potential [Eq. (6)] is the same as that of
the Starobinsky model [20], with the important difference
that the exponent here is controlled by the amount of
explicit breaking in the field theory. In contrast, in the
original Starobinsky model, the exponent is fixed by 4D
general covariance. To understand why the Starobinsky
potential is a special case of Eq. (6), however, all one needs
is scaling symmetry. The starting action of Ref. [20] can be
thought of as a special case of scale invariant theory where
the breaking of scale invariance is induced purely gravi-
tationally, by an explicit M2

PlR term. This immediately
explains the necessity that in Starobinsky inflation, the R2

term must dominate over M2
PlR to yield inflation: the scale

symmetry breaking term must be subleading in the UV for
the protection mechanism to be operational. This is also the
reason behind the emergence of the same type of potentials
in the context of induced gravity, as explained in Ref. [21].
The slow-roll parameters and the number of e folds of

inflation are given in this model by

ϵV ¼ 2ϵ2ξ

ð1 − eϵ
ffiffi
ξ

p
φ=MPlÞ2 ;

ηV ¼ ϵVð2 − eϵ
ffiffi
ξ

p
φ=MPlÞ;

N ≃ 1

2ϵ2ξ

�
ðeϵ

ffiffi
ξ

p
φ0=MPl − 1Þ − φ0ffiffiffi

2
p

MPl

�
: ð7Þ

The above expressions depend only on the combination
ϵ

ffiffiffi
ξ

p
, which is the single parameter needed to characterize

this model. Now, we can compute the scalar power spectrum
Ps, the tensor-to-scalar ratio r≃ 16ϵV , and the tilt of the
primordial scalar perturbations ns≃1þ2ηV−6ϵV , at the
CMB horizon exit with NCMB ≃ 60. We show in Fig. 1
the values of ns and r while varying ϵ

ffiffiffi
ξ

p
∈ ½−0.5; 0.5�, for

φ0 < hφi ¼ 0, corresponding to almost marginal perturba-
tions. The same results are obtained for φ0 > hφi ¼ 0,
but with opposite signs for ϵ. The points shown correspond
to ϵ

ffiffiffi
ξ

p ¼ −0.001;−0.01;−0.05; 0.001; 0.01; 0.1; 0; 5, andffiffiffiffiffiffiffiffi
2=3

p
, corresponding to the Starobinsky model. If we insist

on solutions with φ0 < hφi, we can see that this model can
accommodate both very small values of r [for relatively large
anomalous dimensions ϵ

ffiffiffi
ξ

p
∼Oð0.1Þ, that is, marginally

relevant perturbations], while r can be pushed into the region
favored by BICEP2 for ϵ

ffiffiffi
ξ

p
< 0, corresponding to margin-

ally irrelevant perturbations. Similar observations were noted
in specific constructions in Ref. [22]. The Cosmic
Background Explorer (COBE) normalization ðPsÞexp ∼
10−9 enforces a constraint on the parameter α in the
potential, for fixed ϵ and ~ξ. Explicitly, one obtains

Ps ¼
α2

24π2 ~ξ2

sinh4
�
ϵ

ffiffiffi
ξ

p
φCMB=2MPl

�
ϵ2ξ

; ð8Þ

where φCMB is a function of ϵ
ffiffiffi
ξ

p
. Since Ps increases with

ϵ
ffiffiffi
ξ

p
, smaller values of the explicit breaking parameter ϵ—

and therefore better slow-roll approximation—accommodate
the observed power spectrum more easily, as expected from
general inflationary phenomenology. From the minimum of
Eq. (5), one naturally expects that ϵ is of the order of
1= lnðMPl=ΛϵÞ, where Λϵ parametrizes the onset of scaling
symmetry breaking. For instance, Λϵ ∼ 10�3MPl yields
ϵ ∼ 0.1, while Λϵ ∼ 10�17MPl gives ϵ ∼ 0.01. Using ϵ

ffiffiffi
ξ

p ¼
�0.01 and for the most favorable case of ~ξ≃ 16π2 (notice
that Ps decreases with increasing ~ξ), the scalar power
spectrum is

Ps ≃
�

α

0.1

�
2

× 10−9; ð9Þ

which requires a perturbative value of α compared to its
naive dimensional analysis (NDA) estimate α ∼ 4π.
Another simple potential could arise in the presence of a

marginally relevant and a marginally irrelevant perturba-
tion. For simplicity, we take their dimensions to be 4� ϵ,
although they could be independent. So,
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FIG. 1 (color online). Values of ns and r for ϵ
ffiffiffi
ξ

p
∈ ½−0.5; 0.5�,

for φ0< hφi¼0. The same results are obtained for φ0 > hφi ¼ 0,
but with opposite signs for ϵ. The points shown correspond to
ϵ

ffiffiffi
ξ

p ¼ −0.001;−0.01;−0.05; 0.001; 0.01; 0.1; 0; 5, and
ffiffiffiffiffiffiffiffi
2=3

p
in

green for the Starobinsky model. The red and blue contours show
the 68% and 95% confidence regions by Planck and BICEP2,
respectively.
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VðΦÞ ¼ −α2Φ4 þ β2Φ4−ϵ þ γ2Φ4þϵ; ð10Þ
while in the Einstein frame,

VðφÞ ¼ M4
Pl

4

α2

~ξ2

h
cosh

�
ϵ

ffiffiffi
ξ

p
φ=MPl

�
− 1

i
: ð11Þ

This potential is clearly the noncompact analogue of the
generic axion-type potentials for the case of a broken
compact symmetry. Note that the analogue of the axion
decay constant appearing here is effectively given by
MPl=ϵ

ffiffiffi
ξ

p
, which can be ≫ MPl for small ϵ. However,

obtaining a “large decay constant” and allowing for an even
larger range of variation of φ is straightforward here. The
cosmological parameters are

ϵV ¼ 1

2
ϵ2ξcoth2

�
ϵ

ffiffiffi
ξ

p
φ=2MPl

�
;

ηV ¼ ϵV
coshðϵ ffiffiffi

ξ
p

φ=MPlÞ
;

N ≃ 2

ϵ2ξ
log

h
cosh

�
ϵ

ffiffiffi
ξ

p
φ=2MPl

�i
; ð12Þ

which again only depend on the combination ϵ
ffiffiffi
ξ

p
. In

Fig. 2, we show the line of values of ns and r for
ϵ

ffiffiffi
ξ

p
∈ ð0; 0.5�, with points at ϵ

ffiffiffi
ξ

p ¼ 0.1; 0.01, for either
sign of φ0. The same results are obtained for negative ϵ.
Small values of jϵj yield approximately the same result as
for ϵ ¼ 0.01 (which is also very similar to the result at small
ϵ for the previous potential; see Fig. 1). Thus, this particular
model predicts a relatively large tensor-to-scalar ratio
r≳ 0.1. This is not surprising since the potential is an
extrapolation of the quadratic potential, which generically
yields larger r [3,11]. The normalization of the scalar power
spectrum is again approximately given by Eq. (9) for the
same choice of parameters ϵ; ξ; ~ξ.
Understanding the regime of validity of our effective

field theory is straightforward in the Einstein frame, where

the inflaton “decay constant,” associated with the sponta-
neous breaking of scale invariance, is f ¼ MPl=

ffiffiffi
ξ

p
. The

cutoff is at or below ΛUV ¼ 4πMPl=
ffiffiffi
ξ

p
. We can explicitly

check this by studying the operators at higher order in
derivatives encoded in ΔL in Eq. (1) and identifying the
effective cutoff scale that suppresses them. One such term is
R2, which in the Einstein frame gives rise to

1

g2R
R2 →

1

g2R

�
Rþ 6

� ffiffiffi
ξ

p
MPl

∇2φ −
ξ

M2
Pl

ð∇φÞ2
��

2

:

Each of the terms on the rhs indicates that the cutoff lies at,
or somewhat below, ΛUV. For instance, the R2 term can be
regarded as arising from integrating out a scalar of mass
M2

R ≃ g2RM
2
Pl, which for the NDA estimate gR ∼ 4π sets the

cutoff at ΛUV ≈ MR ∼ 4πMPl. Similarly, the other two
terms set the cutoff at ΛUV ≈ ðgR=

ffiffiffi
ξ

p ÞMPl ∼ 4πMPl.
Notice, however, that by taking small values of ~ξ in
Eq. (3), for which ξ≃ 2~ξ, this latter cutoff can be raised
above the naive expectation, contrary to the R2 case. The
same behavior as for R2 is found for the R2

μν=~g2R operator. In
this case, it corresponds to a spin-2 ghost field with mass
~M2
R ≃ ~g2RM

2
Pl. As long as ~g2R is sufficiently large, the cutoff

is above MPl.
We stress again that since the inflaton is derivatively

coupled—it appears through its derivatives ∇φ, in any of
the operators in ΔL—the field excursion of the inflaton
beyond ΛUV is not a problem, given that the inflaton
potential is almost flat. Large φ values could be problematic
in nonderivative terms, associated with the explicit
breaking of the shift symmetry. However—as long as
the breaking of the scaling or shift symmetry is weak—
they are small and under control, via ϵ suppression. Even if
the actual explicit breaking of scaling symmetry is below
MPl but is weak, the low-energy theory remains extremely
well protected by the approximate shift symmetry, essen-
tially staying valid all the way up to the scale of quantum
gravity, because the scaling symmetry breaking sector is
very efficiently sequestered from the low-energy inflaton.
Finally, we turn to the dynamics of the matter fields,

which is clearly dependent on the UV completion.
Assuming that at very high energies the SM fields are
the proper degrees of freedom, the couplings in the matter
Lagrangian LM are classically marginal, with the exception
of the Higgs mass. Thus, at tree level, the SM Lagrangian is
scale invariant, while the Higgs mass parameter constitutes
a small explicit breaking of Oðm2

H=M
2
PlÞ. At loop level, the

SM couplings run but the β functions at high energies are
perturbatively small, of Oð1=16π2Þ. The exact form of the
couplings between the dilaton or inflaton and the SM
matter fields depend on the details of the embedding of
the SM fields into the scale invariant UV theory. To obtain
their couplings, one can dress the dimensionful parameters
with the appropriate powers of Φ=hΦi ¼ eφ=f, with
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FIG. 2 (color online). Line of values of ns and r for
ϵ

ffiffiffi
ξ

p
∈ ð0; 0.5�, with points at ϵ

ffiffiffi
ξ

p ¼ 0.1; 0.01, for either sign
of φ0. The same results are obtained for negative ϵ. The red and
blue contours show the 68% and 95% confidence regions by
Planck and BICEP2, respectively.
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f ¼ MPl=
ffiffiffi
ξ

p
. This leads to a decay rate to W, Z, and h

bosons of

Γφ ≃ 4ξ

32π

m3
φ

M2
Pl

≃ 0.5 GeV

�
ξ

1=12

��
mφ

1013 GeV

�
3

; ð13Þ

where the mass of the inflaton, in the simplest example of
Eq. (6), is given by

mφ ¼ MPl
αϵ

ffiffiffi
ξ

p
~ξ

≃ 1013
�

α

0.1

��
ϵ

ffiffiffi
ξ

p
0.01

��
16π2

~ξ

�
GeV:

ð14Þ
The reheat temperature is generically dominated by

φ → WW;ZZ; hh decays and is given by

TRH ∼ g−1=4� ðΓMPlÞ1=2 ∼ 3 × 108 GeV; ð15Þ
for g� ∼Oð100Þ and for the parameters chosen above. We
can see that this temperature is high enough to accom-
modate baryogenesis but sufficiently low to avoid restora-
tion of high scale symmetries [like the grand unified theory
(GUT)] and prevent any regeneration of undesired topo-
logical defects. So, in closing, we note that our construction
represents a fully viable model of large field inflation.
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