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The fact that not all measurements can be carried out simultaneously is a peculiar feature of quantum
mechanics and is responsible for many key phenomena in the theory, such as complementarity or
uncertainty relations. For the special case of projective measurements, quantum behavior can be
characterized by the commutator but for generalized measurements it is not easy to decide whether two
measurements can still be understood in classical terms or whether the already show quantum features.
We prove that a set of generalized measurements which does not satisfy the notion of joint
measurability is nonclassical, as it can be used for the task of quantum steering. This shows that
the notion of joint measurability is, among several definitions, the proper one to characterize quantum
behavior. Moreover, the equivalence allows one to derive novel steering inequalities from known results
on joint measurability and new criteria for joint measurability from known results on the steerability of
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states.
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Introduction.—Quantum theory is formulated in the
language of Hilbert spaces, where states correspond to
vectors or density matrices, and measurements are
described by Hermitian matrices, the so-called observables.
As realized by M. Born and P. Jordan, two observables A
and B do not necessarily commute, which means, in the
first place, that the corresponding measurements cannot be
carried out simultaneously in a direct way [1,2]. This
intuition can be made precise by formulating uncertainty
relations, where the commutator [A, B = AB — BA quan-
tifies the degree of uncertainty about the values of A and B
[2-4]. Consequently there is the widespread opinion
that sets of noncommuting observables are central for
many quantum effects, while commuting observables are
considered to be classical.

It has turned out, however, that the notion of observables
is far too narrow to describe all measurements procedures
in quantum mechanics. This has led to the formulation of
generalized measurements or positive operator valued
measures (POVMs). Mathematically, a POVM consists
of a collection of operators E = {E(i),i € I} which are
positive, E(i) > 0, and sum up to the identity, Y ", E(i) = 1.
The POVM elements E(i) describe the measurement out-
comes and the probability of an outcome i is given by
p(i) = tr[E(i)]. Physically, any POVM can be realized by
first letting the physical system interact with an auxiliary
system and then measuring an ordinary observable on the
auxiliary system. Finally, any observable A is also a POVM
if one identifies the E(i) with the projectors onto the
eigenspaces of A, in which case the measurement is also
called a projection valued measure (PVM).

Given the notion of generalized measurements the
question arises, when two or more POVMs can be
considered to be nonclassical. One possibility is to require
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the commutativity of all the POVM elements, but more
refined notions are useful. Indeed, several notions such as
“nondisturbance,” “‘joint measurability,” and “coexistence”
have been introduced and their investigation is an active
area of research [5-9].

In this Letter, we argue that the notion of joint
measurability is the proper one to describe the classical
behavior of two or more generalized measurements. To do
so, we establish a connection between joint measurability
and the task of quantum steering. Quantum steering refers
to the scenario, where one party, usually called Alice,
wishes to convince the other party, called Bob, that she
can steer the state at Bob’s side by making measurements
on her side. This task was introduced by E. Schrodinger to
demonstrate the puzzling effects of quantum correlations
[10] and recently it has attracted increasing attention again
[11-16].

More precisely, we show that a set of POVMs in the
finite dimensional case is nonjointly measurable if and only
if the set can be used for Alice to show the steerability of
some quantum state. This allows one to derive new steering
inequalities from results known for joint measurability, and
we will also find new criteria for joint measurability from
results on steering. Finally, we demonstrate that other
possible extensions of commutativity to generalized mea-
surements, such as coexistence, lead to nonclassical effects
and we explore the relation of joint measurability to Bell
inequality violations.

Joint measurability.—The notion of joint measurability
is most conveniently introduced with an example. The
Pauli spin matrices ¢, and ¢, are noncommuting and cannot
be measured jointly. However, one can consider the
smeared or unsharp measurements S, and S,, defined
by the POVM elements S,(£) =1 (14 (1/v2)s,) and
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S.(£) =1(1+(1/v2)s,). It was shown in Ref. [17] that
these are jointly measurable: One can consider the joint
observable

. . .
Gli.j) =5 (11 +éax +\;§0z>, ije{-1+1}

(1)

and since S,(+) =) ;G(+,j) and S (+) = > ,G(i, %),
one can jointly determine the probabilities of the general-
ized measurements S, and S, by measuring G.

More precisely, joint measurability of the set {E;}
of POVMs can be formulated as the existence of a set
of positive operators {G(4)} from which the original
observables can be attained as

> D;(xlk)G (2
A

with > ,G(4) =1 and where D,(x|k) are positive con-
stants with »_ D, (x|k) =1 [18]. In practice, this means
that the probabilities of the results E;(x) can be determined
by measuring the operators G(4) and classically postpro-
cessing the data.

Quantum steering.—The essence of steering can also be
described by an example. Let us assume that two parties,
Alice and Bob, share a maximally entangled two-qubit state
ly) = (|00) + |11))/+/2. If Alice measures the Pauli oper-
ators o, or o,, the state on Bob’s side will be an eigenstate
|x*) or |z%) depending on Alice’s measurement and result.
Since all these states are pure, Bob cannot explain this by
assuming that he has a fixed marginal state ¢z which is only
modified due to the additional knowledge from Alice’s
measurements. So Bob must conclude that Alice can steer
the state in his lab by making measurements on her side.
The question arises whether the same phenomenon occurs
if Alice uses the smeared measurements S, and S,
introduced above. This will be answered in full generality
in the following.

First, we label Alice’s and Bob’s POVMs by {A;} and
{B,;} and the system’s state by ¢,p. Clearly, the scenario is
nonsteerable if the probabilities of possible events can be
written in the form

= E;(x) forall x,k, (2)

) ® B(y

Zp

because then Bob can assume that he has the collection of
states ¢, with probabilities p(1) which is only modified by
additional information from Alice’s measurements quanti-
fied by conditional probability distributions p(x|k,1). We
can write the left-hand side of this equation as

trloapAi(x) p(x|k, teleBi(y)]  (3)

tr(tra{[Ac(x) @ Tleas}Bi(y)) = trlexuBi(y)]  (4)

and if Bob’s measurements are tomographically complete it
follows that ¢, = >_,p(4)p(x|a,A)e;. If, on the other
hand, the quantities ¢, admit this kind of a decomposition
(also called a hidden state model) we conclude that the
scenario is nonsteerable.

This can be reformulated as suggested in Refs. [12,13]:
Steering is equivalent to the nonexistence of a set of
positive operators {c;} such that

> p(xlk.)o; = ou forall x,k, (5)
A

with tr(};0;) = 1 and where g, = tra{[As(x) ® ]oas}
are Bob’s not-normalized conditional states. The formal
similarity between Eq. (2) and Eq. (5) is appealing and, as
we will see now, no coincidence.

Steering and joint measurements.—Consider the case
where Alice has observables {A,} which are jointly
measurable. Using Eq. (2) we can write for any steering
scenario the conditional states of Bob as

ek = D (x|k)s {[G(2) ® Veas}. (6)

which is a decomposition as in Eq. (5). Therefore, if Alice’s
observables are jointly measurable then the scenario is
nonsteerable.

Conversely, if the measurements are nonjointly measur-
able, one can always find a state which can be used for
steering: For the maximally entangled state |¢pT) =
1/v/d "%, |ii) one can write Bob’s conditional states as

1
Oue = wa[(Ac(x) @ D ) (p ™[] = Z[A)]". (7)
If the scenario is not steerable then one can find a set of
positive operators {c;} and a set of positive numbers
p(xlk, ) such that

X) = de(x

where G(1) = do}. This is just the joint measurability
condition from Eq. (2). Note that by summing over x in
Eq. (8) we see that G is properly normalized. We now state
the main result of this article.

Observation 1: Generalized measurements are non-
jointly measurable if and only if they can be used for
quantum steering.

Let us note that the reasoning prior to Observation 1 was
done for the maximally entangled state. Steering is,
however, invariant under stochastic local operations and
classical communication [19] on the characterized (Bob’s)
side. This means that any state which is obtained from the
maximally entangled one by stochastic local operations and
classical communication can be used to show steering for a

=Y Dixlk)G(2). (8)
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set of nonjointly measurable observables. Therefore, any
pure Schmidt rank d state (possibly having an arbitrarily
small amount of entanglement) reveals steering.

We exploit the connection by giving a generic incom-
patibility criteria for sharp observables, deriving a steering
inequality based on the Fermat-Torricelli point, and point-
ing out two interesting notes on different formulations of
simultaneous measurability.

From steering to incompatibility.—We show that there
exists a threshold value of white noise [that is, adding the
identity as in Eq. (11)] that one needs to add in order to get
any set of PVMs jointly measurable. For this purpose we
need the following connection between noisy states and
noisy observables:

try[A (x) ® 104 ,] = tra[Af(x) ® Toap), )
where

0hp = A0ap + 7“ ® traloag). (10)

Af(x) = AA (x) + tr[Ag (x)]1. (11)

In order to obtain the threshold value we take the
known result from Ref. [11] stating that the maximally
entangled state is steerable with PVMs up to the amount
A= (Hy;—1)/(d—1) of white noise, where H, =

d_,(1/n). Using Eq. (9) and Observation 1 one obtains
that for any smearing parameter A > A* there must exist a
set of PVMs which is noise resistant up to the amount 4 of
white noise; i.e., one can add this amount of white noise to
the PVMs without making them jointly measurable. On the
other hand, the maximally entangled state reveals steering
for nonjointly measurable observables, so all PVMs must
be jointly measurable with the amount 1* of white noise.
Thus, we arrive at the following result.

Observation 2: In a d-dimensional Hilbert space, any set
of sharp observables is jointly measurable with the amount
A* of white noise. Moreover, for any amount of smearing
above this limit there exists a set of PVMs which remains
nonjointly measurable.

Note that this is formerly known to be sufficient for
d = 2 [20]. The result leads to an interesting open question:
Are there sets of POVMs which remain nonjointly meas-
urable with the amount A* of white noise? If this is the case
then PVMs are not enough for concluding steerability of a
state and if it is not the case then this directly leads to new
local hidden variable models for POVMs.

Fermat-Torricelli steering inequality.—There are many
results of joint measurability known in terms of white
noise resistance [17,21,22]. As an example, consider that
Alice has three dichotomic unbiased [i.e., p(+|k) = 1]
measurements while Bob’s conditional (normalized) qubit
states are characterized by the Bloch vector X k=1,2,3.

Using the joint measurability criterion of Ref. [23] we see
steering iff

X1 + X5 + X3 = Xpr|| + ||X1 = %2 = X3 = Xpr |
+ |[X1 = X + X3 + Xpr|| + |[X1 4 X2 = X3 + Xpr|| > 4,

(12)

where X7 denotes the Fermat-Torricelli point of the vectors
-;C)l +}2 +.}3, 36)1 —.;C’z —.}3, —.}] +;Cz —.;63, and —.}1 —}24‘
Xs; i.e., it is the vector that minimizes the sum in Eq. (12).

Coexistence leads to a nonclassical effect.—Coexistence
of POVMs A; and A, means the possibility of making a
measurement G of which statistics include the statistics of
A; and A,. To be more precise, A; and A, are coexistent if
their POVM elements are contained in the range (i.e., all
possible sums of POVM elements) of a third POVM G.
Note that contrary to joint measurements, the statistics do
not need to originate from a postprocessing scheme as in
Eq. (2). To clarify the notion we present an example given
in Ref. [5] which was originally used to show that
coexistence is more general than joint measurability; for
a similar example, see Ref. [8].

In C3 define |@) = 1/3/3(|1) + [2) + |3)) and a POVM
G by the elements {3]1)(1].5[2)(2].5[3)(3].5]®){el.
2(1=|@){@])}. One sees straightforwardly that the meas-
urement statistics of a three-valued POVM A, defined as
A (i) =4 (1 = ]i)(i|) and a two-valued POVM A, defined
as Ay(1) =1]9){(g|, Ay(2) =T —A,(1) are contained in
the measurement statistics of G; hence, they are coexistent.
In Ref. [5] it was shown that these measurements are
nevertheless nonjointly measurable due to the lack of a
postprocessing relation. By Observation 1 we conclude the
following.

Observation 3: As coexistence is more general than joint
measurability it can reveal steering; i.e., it can lead to
nonclassical effects in the distributed scenario.

Disturbing measurements can be useless for steering.—
One way to define the classicality of two measurements,
say A; and A,, is to say that the measurement of A; does not
disturb the measurement of A,. This means that a meas-
urement of A; updates the state in such a way that a
subsequent measurement of A, has the same statistics
for both the updated and the original state. It was shown
in Ref. [9] that there exists pairs of observables that can
be measured jointly even though they do not admit a
nondisturbing sequential measurement. Using this together
with Observation 1 we conclude that disturbing measure-
ments do not necessarily lead to steering.

Joint measurability and nonlocality.—From the previous
discussion we know that any nonjointly measurable set of
POVMs can reveal its “quantumness” in a strictly non-
classical, nonlocal effect, more precisely, in the form of
steering. Steering is, however, not the ultimate strongest
form of nonlocality since one still needs a quantum
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description on one side. Thus, it is of course a natural
question whether this connection can even be strengthened,
so whether it also holds that any nonjointly measurable set
of POVMs can show nonclassicality in a Bell-type
scenario.

This is indeed the case for two dichotomic measurements
as has been shown by Wolf et al. in Ref. [24]. It also holds
for an arbitrary number of PVMs. In the following, we
argue that it would be very surprising if this connection
were to hold in general, since via a very simple example
one encounters already large difficulties.

Consider the three dichotomic spin measurements of a
qubit A?(£) = (1 £ 46;)/2 with k € {x,y,z}. As already
mentioned, the additional parameter A1 characterizes the
noise on these measurements. For 4 = 1 the measurements
Ay —A’l— are noncommuting projectors, while for 1 <
1/4/3 ~0.5774 the set of POVMs becomes jointly meas-
urable. Suppose that joint measurability and nonlocality are
as strongly connected as steering. This would mean that for
any noisy, but nonjointly measurable set of these POVMs,
i.e., for all 1/v/3 < 4, it is possible to find a respective
bipartite state ¢4z and corresponding measurements for
Bob B;(k), such that the obtained data P( ) =
trloapA}(£) ® B(y)] violate a Bell inequality.

In the search for such an appropriate state, first note that
pure states ¢ p = |y)(w| are sufficient, since any mixed
state can only violate a Bell inequality if at least one pure
state from its range does so. Using the Schmidt decom-
position together with the fact that dim(’HA) =2 we can
write the most general pure state as =Uy ® Usly,)
with |y,) = 5/00) + V1 — s2|11) where 1/V2<s<1.
Since we optimize Bob’s measurements we can additionally
assume Up = 1, meaning that Bob similarly holds a qubit.
Next we also wish to transfer the noise of the measurements
into the state, as given by Eq. (9). Thus, rather than looking
for a pure state which violates a Bell inequality using the
noisy measurements A7, we can equivalently search for a
mixed state that violates a Bell inequality with perfect
measurements A;. To sum up, we would need to show that

for any parameter A > 1/1/3, a state of the form

0a(s3U,) = AU, ® Ty, ) (w,|U, @1
+ (1 =2)1/2 @ trally ) (w,|]  (13)

with appropriately chosen 1/v/2 < s < 1 and U,, violates a
Bell inequality using the three perfect spin measurements on
system A, and arbitrary measurements for system B.

Let us start with the maximally entangled state,
s = 1/\/5, for which it is known that it does not violate
a Bell inequality using projective measurements if 1 <
0.6595 [25]. Hence, for the given noisy nonjointly meas-
urable set of POVMs within 1/ \/§ < 4 £0.6595, the data
of the maximally entangled state, using also projective
measurements for Bob, will not display any nonlocality.
For nonmaximally entangled states the situation is much

less analyzed, especially under the influence of nonwhite
noise as in Eq. (13). The statement extends, however, to
1/v/3 <21 <0.6009 [25] for arbitrary, nonmaximally
entangled states if one wants to reproduce the full corre-
lations. Thus, the only Bell inequalities that remain are the
ones with marginals.

A different way to prove that certain states do not violate
a Bell inequality is to write them as a convex combination
of states known to possess a local hidden variable model for
the considered configuration

QAB S5 UA

Zp oHv. (14)

Generic states that we consider in this decomposition
include (i) noisy Bell states with 4 < 0.6595 and (ii) states
with two symmetric extensions for system A [26]. States of
class (ii) are known to have a local hidden variable model
for three generic measurements for system A [27], such that
we exploit the fact that Alice has only a restricted number
of measurements. Such a search for symmetric extensions
can be easily done with semidefinite programming [28].
Figure 1 shows, depending on the Schmidt coefficient s
(and for all Uy,), the respective maximal values of 4 when
such a decomposition is possible. As can be seen for
s < 0.835, there is always a noise parameter 1 > 1/1/3
such that the given set of POVMs is nonjointly measurable,
but the measured state will not violate a Bell inequality
using an arbitrary number of projective measurements for
Bob. Finally, if one additionally constrains Bob to perform
only n different dichotomic measurements then one can
further add (iii) the class of states that have n — 1 symmetric
extensions for system B. As shown in Fig. | for n < 6, such
a decomposition is possible for all values of s. Thus, there

0.8
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FIG. 1. Maximal values of 4 when a decomposition as given by

Eq. (14) is possible for all U, depending on the Schmidt
coefficient s. It shows that a pure state with s < 0.835 is never
able to reveal Bell nonlocality for an arbitrary number of
projective measurements, while for n < 6 projective measure-
ments it is not possible for any state.
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exists a parameter A > 1/4/3 such that the corresponding
set of POVMs is nonjointly measurable but no quantum
state will display nonlocality if Bob only carries out 6
dichotomic measurements.

These observations give strong hints that there are sets of
POVMs which are nonjointly measurable, but which are
nevertheless useless to certify nonlocality.

Conclusions.—We have shown that joint measurability
and quantum steering are intrinsically connected: A col-
lection of different measurements are nonjointly measur-
able if and only if they can reveal its “nonclassicality” as a
violation of a steering inequality. This connects the abstract
notion of joint measurability to an explicit nonlocality task,
and thereby singles out nonjoint measurability as a special
nonclassical property among other peculiar quantum
features of measurements.

Since measurements are as relevant as quantum states,
we believe that this connection will spur the resource theory
of measurements, i.e., which kind of measurements are
required for certain tasks. This investigation could provide
some operational meaning to other quantum properties of
measurements such as disturbance or noncoexistence in the
distributed scenario.
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Note added.—After finishing this work we noticed that
similar results were obtained in Ref. [29].
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