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We investigate the relation between the incompatibility of quantum measurements and quantum
nonlocality. We show that a set of measurements is not jointly measurable (i.e., incompatible) if and only
if it can be used for demonstrating Einstein-Podolsky-Rosen steering, a form of quantum nonlocality.
Moreover, we discuss the connection between Bell nonlocality and joint measurability, and give evidence
that both notions are inequivalent. Specifically, we exhibit a set of incompatible quantum measurements
and show that it does not violate a large class of Bell inequalities. This suggests the existence of
incompatible quantummeasurements which are Bell local, similarly to certain entangled states which admit
a local hidden variable model.
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The correlations resulting from local measurements on an
entangled quantum state cannot be explained by a local
theory. This aspect of entanglement, termed quantum non-
locality, is captured by two inequivalent notions, namely,
Bell nonlocality [1,2] and Einstein-Podolsky-Rosen (EPR)
steering [3–5]. The strongest form of this phenomenon is
Bell nonlocality, witnessed via the violation of Bell inequal-
ities. Steering represents a strictly weaker form of quantum
nonlocality [4], witnessed via the violation of steering
inequalities [6]. Both aspects have been extensively inves-
tigated in recent years, as they play a central role in the
foundations of quantum theory and in quantum information
processing.
Interestingly, quantum nonlocality is based on two

central features of quantum theory, namely, entanglement
and incompatible measurements. Specifically, performing
(i) arbitrary local measurements on a separable state, or
(ii) compatible measurements on an (arbitrary) quantum
state can never lead to any form of quantum nonlocality.
Hence, the observation of quantum nonlocality implies the
presence of both entanglement and incompatible measure-
ments. It is interesting to explore the converse problem.
Two types of questions can be asked here (see Fig. 1):
(a) Do all entangled states lead to quantum nonlocality?
(b) Do all sets of incompatible measurements lead to
quantum nonlocality?
An intense research effort has been devoted to question

(a). First, it was shown that all pure entangled states violate
a Bell inequality [7,8], hence also demonstrating EPR
steering. For mixed states, the situation is much more
complicated. There exist entangled states which are local,
in the sense that no form of quantum nonlocality can be
demonstrated with such states when using nonsequential
measurements [9,10]. These issues become even more
subtle when more sophisticated measurement scenarios
are considered [11–14].

Question (b) has received much less attention so far. In the
case of projective measurements, it was shown that incom-
patible measurements can always lead to Bell nonlocality
[15,16]. Note that in this case, compatibility is uniquely
captured by the notion of commutativity [17]. However, for
general measurements, i.e., positive-operator-valued mea-
sures (POVMs), no general result is known. In this case,
there are several inequivalent notions of compatibility. Here
we focus on the notion of joint measurability (see, e.g., [18])
as this represents a natural choice in the context of quantum
nonlocality. Several works discussed question (b) for
POVMs [19,20]. The strongest result is due to Wolf et al.
[16], who showed that any set of two incompatible POVMs
with binary outcomes can always lead to violation of the
Clauser-Horne-Shimony-Holt (CHSH) Bell inequality.
However, this result may not be extended to the general
case (of an arbitrary number of POVMs with arbitrarily
many outcomes), since pairwise joint measurability does not
imply full joint measurability in general [21].
Here we explore the relation between compatibility of

general quantum measurements and quantum nonlocality.

FIG. 1 (color online). The observation of EPR steering, a form
of quantum nonlocality, implies the presence of both entangle-
ment and incompatible measurements. Whether the converse
links hold is an interesting question. Here we make progress in
this direction by showing that any set of incompatible measure-
ments can be used to demonstrate EPR steering (green arrow).
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We start by demonstrating a direct link between joint
measurability and EPR steering. Specifically, we show that
for any set of POVMs that are incompatible (i.e., not jointly
measurable), one can find an entangled state, such that
the resulting statistics violates a steering inequality. Hence,
the use of incompatible measurements is a necessary and
sufficient ingredient for demonstrating EPR steering.
This raises the question of how joint measurability

relates to Bell nonlocality. Specifically, the question is
whether, for any set of incompatible POVMs (for Alice),
one can find an entangled state and a set of local
measurements (for Bob), such that the resulting statistics
violates a Bell inequality. Here we give evidence that the
answer is negative. In particular, we exhibit sets of
incompatible measurements which can provably not violate
a large class of Bell inequalities (including all full corre-
lation Bell inequalities, also known as XOR games, see
[2]). We therefore conjecture that nonjoint measurability
and Bell nonlocality are inequivalent. Hence, similarly to
local entangled states, there may exist incompatible quan-
tum measurements which are Bell local.
Steering vs joint measurability.—We start by defining

the relevant scenario and notations. We consider two
separated observers, Alice and Bob, performing local
measurements on a shared quantum state ρAB. Alice’s
measurements are represented by operators Majx such thatP

aMajx ¼ 1, where x denotes the choice of measurement
and a its outcome. Upon performing measurement x,
and obtaining outcome a, the (un-normalized) state held
by Bob is given by

σajx ¼ trAðρABMajx ⊗ 1Þ: ð1Þ

The set of un-normalized states fσajxg, referred to as an
assemblage, completely characterizes the experiment, since
trðσajxÞ is the probability of Alice getting the output a
(for measurement x) and given that information, Bob’s state
is described by σajx=trðσajxÞ. Importantly, one has thatP

aσajx ¼
P

aσajx0 for all measurements x and x0, ensuring
that Alice cannot signal to Bob.
In a steering test [4], Alice wants to convince Bob that

the state ρAB is entangled, and that she can steer his state.
Bob does not trust Alice, and thus wants to verify Alice’s
claim. Asking Alice to perform a given measurement x, and
to announce the outcome a, Bob can determine the
assemblage σajx via local quantum tomography. To ensure
that steering did indeed occur, Bob should verify that the
assemblage does not admit a decomposition of the form

σajx ¼
X

λ

πðλÞpðajx; λÞσλ; ð2Þ

where
P

λπðλÞ ¼ 1. Clearly, if a decomposition of the
above form exists, then Alice could have cheated by
sending the (unentangled) state σλ to Bob and announce

outcome a to Bob according to the distribution pðajx; λÞ.
Note that here λ represents a local variable of Alice,
representing her choice of strategy.
Assemblages of the form (2) are termed “unsteerable”

and form a convex set [22,23]. Hence any “steerable”
assemblage can be detected via a set of linear witnesses
called steering inequalities [6]. By observing violation of a
steering inequality, Bob will therefore be convinced that
Alice can steer his state.
For a demonstration of steering, it is necessary for the

state ρAB to be entangled. However, not all entangled states
can be used to demonstrate steering [4,10,24], at least not
when nonsequential measurements are performed on a
single copy of ρAB.
Moreover, steering also requires that the measurements

performed by Alice are incompatible. To capture the
compatibility of a set of quantum measurements, we use
here the notion of joint measurability; see, e.g., [18]. A set
of m POVMs Majx is called jointly measurable if there
exists a measurement M~a with outcome ~a ¼ ½ax¼1; ax¼2;
…; ax¼m�, where ax gives the outcome of measurement x,
that is

M~a ≥ 0;
X

~a

M~a ¼ 1;
X

~anax
M~a ¼ Majx; ð3Þ

where ~anax stands for the elements of ~a except for ax.
Hence, all POVM elementsMajx are recovered as marginals
of the joint observable M~a. Importantly, the joint measur-
ability of a set of POVMs does not imply that they commute
[25]. Hence, joint measurability is a strictly weaker notion of
compatibility for POVMs. Moreover, joint measurability is
not transitive. For instance, pairwise joint measurability does
not imply full joint measurability in general [21] (see below).
Our main result is to establish a direct link between joint

measurability and steering. Specifically, we show that a set
of POVMs can be used to demonstrate steering if and only
if it is not jointly measurable. More formally we prove the
following result.
Theorem 1. The assemblage fσajxg, with σajx ¼

trAðρABMajx ⊗ 1Þ, is unsteerable for any state ρAB acting
on Cd ⊗ Cd if and only if the set of POVMs fMajxg acting
on Cd is jointly measurable.
Proof 1. The “if” part is straightforward. Our goal is to

show that fσajxg admits a decomposition of the form of
Eq. (2), when fMajxg is jointlymeasurable, for any state ρAB.
Consider M~a, the joint observable for fMajxg, and define
Alice’s local variable to be λ ¼ ~a, distributed according to
Πð~aÞ ¼ trðM~aρAÞ, where ρA ¼ trBðρABÞ. Next Alice sends
the local state σ~a ¼ trAðM~a ⊗ 1ρABÞ=Πð~aÞ. When asked
by Bob to perform measurement x, Alice announces an
outcome a according to pðajx; ~aÞ ¼ δa;ax .
We now move to the “only if” part. Consider an arbitrary

pure state ρAB ¼ jψihψ j with Schmidt number d. Notice
that we can always write jψi ¼ ðD ⊗ 1ÞjΦi, where
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jΦi ¼ P
ijiii is an (un-normalized) maximally entangled

state in Cd ⊗ Cd, and D is diagonal matrix that contains
only strictly positive numbers. The assemblage resulting
from a set of POVMs fMajxg on ρAB is given by

σajx ¼ trAðMajx ⊗ 1jψihψ jÞ ¼ DMT
ajxD; ð4Þ

where MT
ajx is the transpose of Majx. Our goal is now to

show that if σajx is unsteerable then fMajxg is jointly
measurable. As σajx is unsteerable, we have that

σajx ¼
X

λ

πðλÞpðajx; λÞσλ; ð5Þ

which allows us to define the positive definite operator

σ~a ¼
X

λ

πðλÞσλ
Y

x

pðaxjx; λÞ; ð6Þ

from which we can recover the assemblage fσajxg as
marginals, i.e., σajx ¼

P
~anaxσ~a. Since the diagonal matrix

D is invertible, we can define M~a≔D−1σT~aD
−1. It is

straightforward to check that M~a is a joint observable
for fMajxg: (i) it is positive, (ii) it sums to identity, and
(iii) it has POVM elements Majx as marginals. Hence,
fMajxg is jointly measurable, which concludes the proof.
Note, finally, an interesting point that follows from the
above. Considering a set of incompatible measurements
acting on Cd, any pure entangled state of the Schmidt
number d can be used to demonstrate EPR steering. □

Bell nonlocality vs joint measurability.—It is natural to
ask whether the above connection, between joint measur-
ability and steering, can be extended to Bell nonlocality.
Recall that in a Bell test, both observers Alice and Bob are
on the same footing, and test the strength of the shared
correlations. Specifically, Alice chooses a measurement x
(Bob chooses y) and gets outcome a (Bob gets b). The
correlation is thus described by a joint probability distri-
bution pðabjxyÞ. The latter can be reproduced by a
predetermined classical strategy if it admits a decomposi-
tion of the form

pðabjxyÞ ¼
X

λ

πðλÞpðajx; λÞpðbjy; λÞ; ð7Þ

where λ represents the shared local (hidden) variable, andP
λπðλÞ ¼ 1. Any distribution that does not admit a

decomposition of the above form is said to be Bell
nonlocal. The set of local distributions, i.e., of the form
of Eq. (7) is convex, and can thus be characterized by a set
of linear inequalities called Bell inequalities [2]. Hence,
violation of a Bell inequality implies Bell nonlocality.
In quantum theory, Bell nonlocal distributions can be

obtained by performing suitably chosen local measurements,
Majx and Mbjy, on an entangled state, ρAB. In this case, the
resulting distribution pðabjxyÞ ¼ trðρABMajx ⊗ MbjyÞ does

not admit a decomposition of the form of Eq. (7). Bell
nonlocality is, however, not a generic feature of entangled
quantum states. That is, there exist mixed entangled states
which are local, in the sense that the statistics resulting from
arbitrary nonsequential local measurements can be repro-
duced by a local model [9,10,12].
Given the above, we investigate now how joint meas-

urability relates to Bell nonlocality. First, the above
theorem implies that if the set of POVMs fMajxg used
by Alice is jointly measurable, then the statistics pðabjxyÞ
can always be reproduced by a local model, for any state
ρAB and measurements of Bob fMbjyg. The converse
problem is much more interesting. The question is whether
for any set of POVMs fMajxg that is not jointly measurable,
there exists a state ρAB and a set of measurements fMbjyg
such that the resulting statistics pðabjxyÞ violates a Bell
inequality. This was shown to hold true for the case of sets
of two POVMs with binary outcomes [16]. In this case,
joint measurability is equivalent to a violation of the CHSH
Bell inequality. Here we give evidence that this connection
does not hold in general. Specifically, we exhibit a set of
POVMs which is not jointly measurable but nevertheless
cannot violate a large class of Bell inequalities.
Consider the set of three dichotomic POVMs (acting on

C2) given by the following positive operators:

M0
0jxðηÞ ¼

1

2
ð1þ ησxÞ; ð8Þ

for x ¼ 1; 2; 3, where σ1, σ2, σ3 are the Pauli matrices, and
0 ≤ η ≤ 1. Indeed, one has that M1jxðηÞ0 ¼ 1 −M0

0jxðηÞ.
This set of POVMs should be understood as noisy Pauli
measurements. The set is jointly measurable if and only if
η ≤ 1=

ffiffiffi
3

p
, although any pair of POVMs is jointly meas-

urable for η ≤ 1=
ffiffiffi
2

p
[26] (see also [27]). Hence, in the

range 1=
ffiffiffi
3

p
< η ≤ 1=

ffiffiffi
2

p
, the set fM0

ajxðηÞg forms a hollow
triangle: it is pairwise jointly measurable but not fully
jointly measurable.
We now investigate whether the above hollow triangle

can lead to Bell inequality violation. The most general
class of Bell inequalities to be considered here are of the
form [28]

I ¼
X3

x¼1

Xn

y¼1

γxyhAxByi þ
X3

x¼1

αxhAxi þ
Xn

y¼1

βyhByi ≤ 1;

ð9Þ
where

hAxByi ¼ pða ¼ bjxyÞ − pða ≠ bjxyÞ;
hAxi ¼ pð0jxÞ − pð1jxÞ;
hByi ¼ pð0jyÞ − pð1jyÞ: ð10Þ

All (tight) Bell inequalities of the above form for n ≤ 5 are
known (see the Supplemental Material [29]). Using a
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numerical method based on semi-definite-programming [30]
(see the Supplemental Material [29]), we could find the
smallest value of the parameter η for which a given
inequality can be violated using the set of POVMs of
Eq. (8). The results are summarized in Table I. Notably,
we could not find a violation in the range
1=

ffiffiffi
3

p
< η ≤ 1=

ffiffiffi
2

p
, where the set fM0

ajxðηÞg is a hollow
triangle. In fact, no violation was found for η ≤ 0.7786,
whereas pairwise joint measurability is achieved for
η ≤ 1=

ffiffiffi
2

p ≃ 0.7071, thus leaving a large gap. Note also
that pairwise joint measurability implies violation of the
CHSH inequality here, since we have POVMs with binary
outcomes [16]. We thus conjecture that there is a threshold
value η� > 1=

ffiffiffi
3

p
, such that all hollow triangles with

1=
ffiffiffi
3

p
< η ≤ η� do not violate any Bell inequality.

Moreover, we can also show that a large class of Bell
inequalities of the form of Eq. (9) (for arbitrary n) cannot be
violated using the hollow triangle of Eq. (8). Note that for
the set of POVMs, Eq. (8), we have that hAxi ¼ ηtrðσxρAÞ
and hAxByi ¼ ηtrðσx ⊗ MbjyρABÞ for x ¼ 1; 2; 3. Hence,
we can write the Bell polynomial as

I ¼ η~I þ ð1 − ηÞ
X

y

βyhByi; ð11Þ

where ~I is the Bell expression I evaluated for projective
(Pauli) measurements on Alice’s side. Note that ~I ≤ IC2 ,
where IC2 denotes the maximal value of I for qubit strategies.
Hence, no Bell inequality violation is possible when

X

y

jβyj ≤
1 − ηIC2

1 − η
; ð12Þ

given that ηIC2 ≤ 1. Notably this includes all full correlation
Bell inequalities (αx ¼ βy ¼ 0), i.e., XOR games, for which
it is known that the amount of violation is upper bounded for

qubit strategies. More precisely, one has that IC2 ≤ K3 [31]
where K3 ≤ 1.5163 is the Grothendieck constant of order 3.
Hence, for 1=

ffiffiffi
3

p
< η < 1=K3 ≃ 0.6595 we get that the

hollow triangle of Eq. (8) cannot violate any full correlation
Bell inequality.
From the above, one may actually wonder whether Bell

inequality violation is possible at all using a set of POVMs
forming a hollow triangle. We now show that this is the
case. Consider the set of three dichotomic POVMs (acting
on C2) given by the following positive operators:

M00
0jxðηÞ ¼

η

2
ð1þ σxÞ; ð13Þ

for x ¼ 1; 2; 3 and 0 ≤ η ≤ 1. Again, one has that
M00

1jxðηÞ ¼ 1 −M00
0jxðηÞ. To determine the range of the

parameter η for which the above set of POVMs is pairwise
jointly measurable, and fully jointly measurable, we use
the semi-definite-programming techniques of Ref. [16].
We find that the set fM00

ajxðηÞg is a hollow triangle for

0.4226 ≤ η ≤ 0.5858. However, Bell nonlocality can be
obtained by considering a Bell inequality with n ¼ 4
measurements for Bob, for η > 0.5636. Values are sum-
marized in Table I, while details of the construction are
given in the Supplemental Material [29]. This shows that a
set of partially compatible measurements, here a hollow
triangle, can be used to violate a Bell inequality. Moreover,
this suggests that detecting the nonlocality of a set of
three incompatible POVMs is a hard problem, since a large
number of measurements on Bob’s side (possibly infinite)
might be needed. This contrasts with the case of two
POVMs, where two measurements (via CHSH) were
enough [16]. Finally, note that we could find a hollow
triangle with only real numbers (i.e., with all Bloch vectors
in a plane of the sphere) which violates a Bell inequality
with n ¼ 3 measurements [32], i.e., the simplest possible
case (see the Supplemental Material [29]).
Finally, an interesting open question is the following.

Considering a set of arbitrarily many POVMs, it is known
that any partial compatibility configuration can be realized
[33]. Is it then possible to violate a Bell inequality for any
possible configuration?
Discussion.—We have discussed the relation between

joint measurability and quantum nonlocality. First, we
showed that a set of POVMs is incompatible if and only
if it can be used to demonstrate EPR steering. Hence, EPR
steering provides a new operational interpretation of joint
measurability. Second, we explored the link between joint
measurability and Bell nonlocality. We gave evidence that
these two notions are inequivalent, by showing that a
hollow triangle (a set of 3 POVMs that is only pairwise
compatible) can never lead to a violation of a large class
of Bell inequalities. We conjecture that this hollow triangle
is Bell local, that is, it cannot be used to violate any Bell
inequality. Hence, such a measurement would represent

TABLE I. Bell inequality violation with incompatible POVMs.
Specifically, we consider the sets given in Eqs. (8) and (13).
For each set, we determine the smallest value of the parameter η,
such that the set becomes jointly measurable (JM), and achieve
Bell inequality violation. We consider tight Bell inequalities
where Bob has up to n ¼ 5 measurements (see Supplementary
Material [29]). Note that pairwise joint measurability is equiv-
alent to violation of the CHSH Bell inequality.

fM0
ajxðηÞg fM00

ajxðηÞg
Pairwise JM (CHSH violation) 1=

ffiffiffi
2

p
≈ 0.7071 0.5858

Triplewise JM 1=
ffiffiffi
3

p
≈ 0.5774 0.4226

Bell violation (n ¼ 3): I3322 0.8037 0.6635

Bell violation (n ¼ 4): I13422 0.8522 0.7913
I23422 0.8323 0.5636
I33422 0.8188 0.6795

Bell violation (n ¼ 5): I3522 0.7786 0.5636
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the analogue, for a quantum measurement, of a local
entangled state.
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Note added.—While the present work was under review, we
became aware of a related work [34].
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