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Spatially entangled twin photons provide both promising resources for modern quantum information
protocols, because of the high dimensionality of transverse entanglement, and a test of the Einstein-
Podolsky-Rosen paradox in its original form of position versus impulsion. Usually, photons in temporal
coincidence are selected and their positions recorded, resulting in a priori assumptions on their
spatiotemporal behavior. In this Letter, we record, on two separate electron-multiplying charge coupled
devices cameras, twin images of the entire flux of spontaneous down-conversion. This ensures a strict
equivalence between the subsystems corresponding to the detection of either position (image or near-field
plane) or momentum (Fourier or far-field plane). We report the highest degree of paradox ever reported and
show that this degree corresponds to the number of independent degrees of freedom, or resolution cells, of
the images.

DOI: 10.1103/PhysRevLett.113.160401 PACS numbers: 03.65.Ud, 42.50.Ar, 42.50.Dv, 42.50.Xa

In 1935, Einstein, Podolsky and Rosen (EPR) showed [1]
that quantum mechanics predicts that entangled particles
could have both perfectly correlated positions andmomenta,
in contradiction with the so-called local realism where two
distant particles should be treated as two different systems.
Though the original intention of EPR was to show that
quantum mechanics is not complete, the standard present
view is that entangled particles do experience nonlocal
correlations [2–4]. It can be shown that the spatial extent of
these correlations corresponds to the size of a spatial unit of
information, or mode, offering the possibility of detecting
high dimensional entanglement in an imagewith a sufficient
number of resolution cells [5,6]. However, in most experi-
ments the use of single photon detectors and coincidence
counting leads to the detection of a very few parts of the
selected photons, generating a sampling loophole. High
sensitivity array detectors have been used outside the single
photon-counting regime in order to witness quantum fea-
tures of light [7,8]. However, the EPR paradox is intimately
connected to the particle character of light and its detection
should involve single photon imaging, possible either
with intensified charge coupled devices able to isolate pairs
of entangled photons [9,10] or, more recently, electron-
multiplying charge coupled devices (EMCCDs) [11].
Because of their high quantum efficiency EMCCDs

allowed the demonstration of sub-shot-noise correlations
in far-field images of spontaneous parametric down-
conversion (SPDC) [12,13].More recently, two experiments
intended to achieve the demonstration of an EPR paradox
or EPR correlations in couples of near-field and far-field
images recorded with in an EMCCD. The first experiment
in our group involved the detection of twin images on a
single camera, by separating in the near field the cross-
polarized photons with a polarizing beam splitter, inducing
some overlap of the near-field images and a rather small

resolution in the far field because of walk-off. The results
exhibited a low degree of paradox, far from the theoretical
values, though highly significant and in accordancewith the
full-field requirements [14]. The second experiment [15]
exhibited also both near-field and far-field correlations, with
a much lower product of the spatial extents. However,
because of type-I phase matching, photons of a pair were
detected on the same coherence area in the near field. As a
consequence, pairs that were incident on the same pixel
did not participate to the experimental correlation, because
of the on-off character of the detection, and results were
obtained for only one dimension because of the smearing
effects between adjacent pixels. More fundamentally, the
absence of spatial separation makes that the two parts of
the wave function corresponding to the two photons are
spatially superposed in the near field, while a demonstration
of an EPR paradox implies detection of remote correlations.
Hence, the authors claimed observation of EPR-type corre-
lations rather than an EPR paradox.
In the present experiment, the use of two cameras allows

a separation of the twin images without any further optical
component, thanks to walk-off, and a perfect identity of the
subsystems corresponding to far-field and near-field detec-
tion, except the position of the imaging systems composed
on each arm of a lens and a camera. Before describing our
experimental results, let us recall that an EPR paradox
arises when correlations violate an inequality correspond-
ing to the Heisenberg uncertainty principle if applied to a
single particle 1 or 2, but expressed in terms of conditional
variances [16,17]:

hΔ2ðρ1 − ρ2ÞihΔ2ðp1 þ p2Þi ≥
ℏ2

4
; ð1Þ

where ρi is the transverse position of photon i (i ¼ 1; 2) in
the middle plane of the crystal and pi its transverse
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momentum. In order to make the demonstration consistent,
the statistical evaluation of the variances should be made on
the same system in the near and the far field. By using two
EMCCD cameras that detect photons in the whole SPDC
field, we ensured this consistency. By approximating the
phase matching function of SPDC to a Gaussian, the wave
function of the biphoton can be written [18]

Ψðρ1; ρ2Þ ¼ Nexp

�
−
jρ1 þ ρ2j2

4σ2p

�
exp

�
−
jρ1 − ρ2j2

4σ2ϕ

�
;

ð2Þ

Ψðp1;p2Þ¼
1

Nπ2
exp

�
−σ2P

jp1þp2j2
4ℏ2

�
exp

�
−σ2ϕ

jp1−p2j2
4ℏ2

�
;

ð3Þ
where N is a normalization constant, ρi ¼ ðxi; yiÞ,
pi ¼ ðpxi; pyiÞ, σP the standard deviation of the
Gaussian pump beam, and σϕ the standard deviation,
defined in the near field, of the Fourier transform of the
phase matching function defined in the far field. In our
experimental conditions where σP ≫ σϕ, these equa-
tions show that the product of conditional variances is
equal to

(a) (b)

FIG. 1 (color online). Experimental setups used to image correlations. (a) Measurement of momentum correlations with the cameras in
the focal plane. Inserts: sums of 700 far-field images; px1 ¼ −px2; py1 ¼ −py2 are the coordinates of twin pixels. (b) Cameras in the
crystal image plane and sums of 700 near-field images with twin pixels in x1 ¼ x2; y1 ¼ y2.
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FIG. 2 (color online). Joint probabilities versus the transverse spatial coordinates. Color scales are expressed in coincidence counts
over 35 000 pairs of images, corrected from the mean corresponding to accidental coincidences: (a),(b) near field; (c),(d) far field. (e) In
the far field, the correlations arise in a coherence area that is larger for momenta the most distant from the pump direction, in the direction
x along which the two fluorescence beams are separated from the walk-off.
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hΔ2ðρ1 − ρ2ÞihΔ2ðp1 þ p2Þi ¼ ℏ2
σ2ϕ
σ2p

¼ ℏ2

4V
; ð4Þ

where V is defined by this equation as the degree of
paradox. Using the results of Law and Eberly [19], it can be
shown thatV is also the Schmidt number of the entanglement
[20], i.e., the whole dimensionality of the biphoton in the
two-dimensional transverse space. For a one-dimensional
system of length corresponding to the lateral size of the
bidimensional one, the Schmidt number becomes equal to
the square root of that of the bidimensional system.Hence,V
becomes the square of this Schmidt number [21].
The experimental setup is shown in Fig. 1. Pump

pulses at 355 nm provided by a 27 mW laser illuminated
a 0.6-mm long β barium borate (BBO) nonlinear crystal cut
for type-II phase matching. The signal and idler photons
were separated by means of two mirrors and sent to two
independent imaging systems. The far-field image of the
SPDC was formed on the EMCCDs placed in the focal
plane of two 120-mm lenses, Fig. 1(a). In the near-field
configuration, Fig. 1(b), the plane of the BBO crystal was
imaged on the EMCCDs with a transversal magnification
M ¼ 2.47� 0.01. Note that only the positions of the lenses
and cameras are different in the two configurations. The

back-illuminated EMCCD cameras (Andor iXon3) have a
quantum efficiency greater than 90% in the visible range.
The detector area is formed by 512 × 512 pixels, with a
pixel size of spix ¼ 16 × 16 μm2. We used a readout rate
of 10 MHz at 14 bits, and the cameras were cooled to
−100 °C. An image corresponds to the summation of
100 laser shots, i.e., an exposure time of 0.1 s and a dead
time between two successive images of about the same
value, in order to allow a perfect synchronization between
both cameras. Measurements were performed for a crystal
orientation corresponding to noncritical phase matching at
degeneracy, i.e., collinear orientation of the signal and idler
Poynting vectors in the crystal [22]. Photon pairs emitted
around the degeneracy were selected by narrow-band
interference filters centered at 710 nm (Δλ ¼ 4 nm). The
photon-counting regime was ensured by adjusting the
exposure time in such a way that the mean fluency of
SPDC was between 0.1 and 0.2 photon per pixel in order to
minimize the whole number of false detections [11]. The
mean number of photons per spatiotemporal mode was less
than 10−3, in good agreement with the hypothesis of pure
spontaneous parametric down-conversion, without any
stimulated amplification. We applied a thresholding pro-
cedure [11] to convert the gray scales into binary values that
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FIG. 3 (color online). Normalized cross-correlation functions in position and momentum: The cross-correlation is calculated over
700 images in the far field (a),(c) and image plane (b),(d). In (c) and (d) are presented cross-correlation of images that do not share any
pump pulses.
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correspond to 0 or 1 photon. The conditional probability
distributions calculated using 35 000 images are shown in
Fig. 2. The correlation profiles agree with the theoretical
expectations (2) and (3) with σp ≫ σϕ.
We have shown [23] that the conditional variances

hΔ2ðρ1 − ρ2Þi and hΔ2ðp1 þ p2Þi correspond to the widths
of the normalized cross-correlation of photodetection
images, after subtraction from these images of their deter-
ministic part, i.e., the mean of the images shown in the insets
of Fig. 1. Because of this subtraction, the spots observed in
the near-field insets, due to tiny defaults on the BBO crystal,
do not lead to deterministic correlations; see Fig. 3(d). The
experimental values obtained by fitting the normalized cross-
correlations presented in Fig. 3 are reported in Table I, for the
two orthogonal directions of the transverse plane x and y.
Using the measured values given in Table I, we find the

following product of conditional variances:

Δ2ðx1 − x2ÞΔ2ðpx1 þ px2Þ ¼ ð2.9� 0.2Þ × 10−3ℏ2; ð5Þ

Δ2ðy1 − y2ÞΔ2ðpy1 þ py2Þ ¼ð4.2� 0.2Þ × 10−4ℏ2: ð6Þ

These results clearly violate inequality (1), thus exhibiting
an EPR paradox in the two transverse dimensions.
Moreover, the results are in rather good agreement with
the theoretical expectations 8.6 × 10−4ℏ2 on x and 2.6 ×
10−4ℏ2 on y obtained by a numerical computation that takes
into account the effect of the width of the interference filter.
This effect explains the anisotropy shown in Fig. 2(e), i.e., an
enlargement in the x direction for the large values of x1: for
non perfect frequency-degenerate photons, the shift from
perfect symmetry is proportional to the walk-off, as detailed
in [23]. This effect should not be confounded with the
anisotropy described in [24], that is due to an extraordinary
strongly focused pump in a long uniaxial crystal. Note also
that our numerical computation uses the exact sinc-like
phase matching function and not its Gaussian approxima-
tion. By using Eq. (4), we find along x a degree of paradox of
86� 5 and along y of 595� 40. To the best of our knowl-
edge, this degree of 595 is the highest ever reported for an
EPR paradox, whatever the considered domain. The former
best values were 25 for quadrature experiments [25], 380 for
the EPR correlations of Ref. [15], 128 inRef. [5], and 100 by
encoding with a spatial light modulator [26].
We show in Fig. 4 that the minimum number of images

that allows a safe assessment of the correlation peaks in
both spaces is of the order of 20. Indeed a quantum
correlation peak is evidenced if it cannot be confounded,

TABLE I. Inferred variances.

Variances Measured values

Δ2ðx1 − x2Þ 299� 14 μm2

Δ2ðy1 − y2Þ 168� 7 μm2

Δ2ðpx1 − px2Þ ð9.70� 0.1Þ × 10−6ℏ2 μm−2
Δ2ðpy1 − py2Þ ð2.53� 0.04Þ × 10−6ℏ2 μm−2
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FIG. 4 (color online). Normalized cross-correlation function versus the number of images: left images show correlation computed
on the physical pixels (only the central part is presented). Smaller right images show correlation computed after grouping 8 × 8 pixels:
(a),(b) far field; (c),(d) near field.
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with high probability, with random fluctuations of the
background noise. Without any a priori assumption on
the position of the peak, this is ensured with a confidence
of 99% if the magnitude of the true peak is greater than
4,5 standard deviations, for an image of 64 × 64 pixels
obtained by summing the correlations on groups of 8 × 8
pixels. This grouping is performed in order to adapt the
size of the effective pixel to the size of the correlation peak.
In Fig. 4, we have defined the signal-to-noise-ratio (SNR)
as the magnitude of the correlation peak divided by the
standard deviation, after grouping, of the correlation image
outside the peak area. The minimum number of images
necessary to demonstrate entanglement is only two in the
far field, where deterministic distortions appear to be
smaller than in the image plane.
Finally, we have verified that the images exhibit a sub-

shot-noise statistics in both the near field and the far field:
rn ¼ 0.9975� 0.0004 and rf ¼ 0.9959� 0.0003, where r
is defined by

r ¼ hΔ2ðN1 − N2Þi
hN1 þ N2i

; ð7Þ

that is, thevariance of the photon number differenceN1ðρÞ −
N2ðρÞ [and N1ðpÞ − N2ð−pÞ in far field] normalized to be
expressed in shot noise units. These experimental results are
under the classical limit 1, respectively, by more than 5 and
10 standard deviations, witnessing the quantum, i.e., par-
ticlelike, character of the correlations [12]. Note that smaller
values of r can be obtained by grouping the pixels [23].
To conclude, we have demonstrated a two dimensional

EPR paradox in the closest form of its original proposal by
recording the behavior of light in couples of twin images. The
quantum character of these images has been doubly dem-
onstrated first by full-field measurement of a high degree of
EPR paradox for both transverse directions, and second
by demonstrating subshot noise character in both the near
field and the far field. Reliable results can be obtained with
20 images, i.e., an acquisition time of 4 s and a computation
time that scales also in seconds since cross-correlations are
computed using FFTalgorithms. This should be compared to
days for raster scanning, or hours for compressive sensing
[27]. Because of the experimental anisotropy, the dimen-
sionality of entanglement, or Schmidt number K, can be
assessed as the square root of the product of the paradox
degrees in each direction: K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

594 × 85
p ¼ 225. Such

high-dimensionality spatial entanglement has applications
in numerous fields of quantum optics, like quantum cryp-
tography [28] or quantum computation [29].
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