
Manipulating Semiconductor Colloidal Stability Through Doping

Mark E. Fleharty,1,2 Frank van Swol,2,3,* and Dimiter N. Petsev2,†
1Nanoscience and Microsystems Program, University of New Mexico, Albuquerque, New Mexico 87131, USA

2Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
3Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

(Received 10 June 2014; published 7 October 2014)

The interface between a doped semiconductor material and electrolyte solution is of considerable
fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain
mobile charges, which respond to potential variations. This is exploited to design electronic and
optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge
mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in
aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor
interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion
between two charged colloids is reduced from the one governed by the charged groups present at the
particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial
effect on the suspension dynamics and stability.

DOI: 10.1103/PhysRevLett.113.158302 PACS numbers: 82.70.Dd, 73.40.Mr

Semiconductor colloids are of significant fundamental
interest and present opportunities for new and exciting
applications [1,2]. A basic property pertinent to any colloidal
system is its stability. Semiconductor colloids are no differ-
ent. Strategies to stabilize such systems employ electrostatic
and/or steric [3,4] repulsion against van der Waals attraction
to prevent the particles from coagulating. The balance
between electrostatic repulsion and van der Waals attraction
is the foundation of the celebrated Derjaguin-Landau-
Verwey-Overbeek (DLVO) theory of colloid stability
[5,6]. We find that the charge density in the doped semi-
conductor particle interior plays an essential role and can
significantly alter the overall interaction. It has been exper-
imentally established that the charge density inside a doped
semiconductor in the vicinity of a semiconductor-electrolyte
interface will shift in response to changes in the electrostatic
potential in the electrolyte phase. This effect has been
exploited to perform force measurements [7,8] and is utilized
in a significant number of sensing applications that use
nanoscale semiconductors [9–13].
We hypothesize that the internal charge redistribution

due to external field perturbation should in turn affect the
force between two approaching semiconductor colloidal
particles. Hence, the DLVO theory has to be revisited when
applied to doped semiconductor colloids. In this Letter we
provide such a revision based on a general electrostatic
analysis. We show that the internal response of the doped
semiconductor particles to changes of the potential in the
electrolyte may have a dramatic effect on their kinetic
stability. In addition, it opens up possibilities of new
methods for control and manipulation.
The system under consideration consists of two spherical

colloidal particles suspended in an electrolyte solution. In

order to be specific, let the particles have Si cores (other
semiconductors will perform similarly) and the terminal
ligands at the surface have −SiO− groups [3]. Such oxide
layer may naturally form when Si is exposed to air or water
that has dissolved oxygen. The −SiO− groups are subject to
surface charge regulation [14–16] through chemical equi-
libria with constants K− and Kþ such that

SiOHþ
2 ⇌SiOHþ Hþ; pKþ ¼ −log10Kþ;

SiOH⇌SiO− þ Hþ; pK− ¼ −log10K−: ð1Þ

Wewill assume (without loss of generality) that the cores
are n-doped. The potential Ψ in the two domains is
described by the Poisson equation [17]

∇2Ψ ¼ −
ρ

ϵϵ0
; ð2Þ

where ρ is the charge density, and ε and ε0 are the medium
dielectric permittivity and the dielectric constant of vac-
uum, respectively. The charge density in the electrolyte
solution is distributed according to Boltzmann’s classical
statistical mechanics. In contrast, the charge distribution
density in the doped semiconductor particle core is subject
to quantum exclusion limitations and may have to be
described by a temperature dependent Fermi-Dirac distri-
bution [18,19]. The charge densities are given as

ρ ¼

8>>><
>>>:

P
i
n0i zi expð−zieΨkBT

Þ; electrolyte

eNd½1 − χF1=2ðμ−eΨkBT
Þ�; semiconductor

0; oxide;

ð3Þ
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where e is the fundamental unit of charge, kBT is the
thermal energy, n0i is the bulk number density of species i,
zi is the charge of ion i, Nd is the number density of donors
in the semiconductor, and ℏ is the reduced Planck constant.
F1=2 is the Fermi integral and is defined as

F1=2ðxÞ ¼
2ffiffiffi
π

p
Z

∞

0

dt
t1=2

1þ expðt − xÞ ; ð4Þ

where μ is the Fermi level [19], and the parameter χ is given
by

χ ¼ 1

4Nd

�
2m�kBT
πℏ2

�
3=2

; ð5Þ

where m� is the effective mass of the electron. The charge
density inside the oxide layer is zero.
Since we are considering a system at room temperature,

it is appropriate to use the limiting case of the Fermi
function where

χF1=2

�
μ − eΨ
kBT

�
→ exp

�
−

eΨ
kBT

�
: ð6Þ

The boundary conditions required to solve Eq. (2), are to
match potentials at the interfaces of the semiconductor
(subscript “sc”), oxide (subscript “ox”) and electrolyte
(subscript “el”) such that the charge regulating boundary
condition is enforced at the oxide-electrolyte interface
through

Ψox ¼ Ψel ¼ Ψs; σs ¼ n · ½εoxð∇ΨÞox − εelð∇ΨÞel�
ð7Þ

while the boundary conditions applied at the semiconductor-
oxide interface are

Ψsc ¼ Ψox; 0 ¼ n · ½εscð∇ΨÞsc − εoxð∇ΨÞox�; ð8Þ

where σs and Ψs are the surface charge and potential
governed by the chemical equilibria given in Eq. (1), n is
the vector normal to the surface, and ϵsc, ϵox, ϵel are the
dielectric constants of the semiconductor, oxide, and electro-
lyte, respectively.
In this model we use a site dissociation model such that

the charge density is given by [14,20]

σsðΨsÞ ¼
eΓδ sinh½eðΨN −ΨsÞ=kBT�
1þ δ cosh½eðΨN −ΨsÞ=kBT�

: ð9Þ

Γ is the number of ionizable groups per unit area at the
surface, δ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K−=Kþ

p
, Ψs is the potential at the solid-

liquid interface [see Eq. (7)], the Nernst potential ΨN is
given as

ΨN ¼ kBT
e

lnð10ÞðpI − pHÞ; ð10Þ

the isoelectric point is given as pI ¼ ðpKþ þ pK−Þ=2, pH
denotes the value for the pH far from the interface and pI is
the isoelectric point of the solid-liquid interface.
The spatial dependence of the electrostatic potential Ψ

and charge density ρ on the distance between two particles
with a separation of 10 nm and a particle in isolation is
shown in Fig. 1. The results presented in the figure were
obtained by numerically solving Eqs. (2) and (3).
Alternatively, the exact analytical solution of Behrens
and Borkovec for interacting surfaces with charge regula-
tion [21] can be adapted to obtain the same results. As the
distance between the charged particles varies, the potential
distribution changes in the electrolyte filled gap between
the surfaces as well as in the particle interior. This is due to
the fact that the potentials inside and outside of the particles
are connected through Eqs. (7) and (8). The coupling goes
both ways; hence, the potential and charge distributions in
the electrolyte will be affected by the fact that the inner
charges respond by internal redistribution to the particle
approach.
Knowing the effect of separation on the potential and

charge density distributions, in both the particle interior and
exterior, allows us to derive the pair electrostatic energy of
interaction between the two spherical colloidal particles of
radius a separated by distance h using the Derjaguin
method [5,6]

UeðhÞ ¼ πa
Z

∞

h
dy

Z
y

∞
dzΠeðzÞ; ð11Þ

FIG. 1 (color online). One-dimensional potential distributions
in the electrolyte solution (red), oxide layer (black), and the
semiconductor (blue) approximated as infinite flat plates. The
solid line corresponds to two particles separated by 10 nm, while
the dashed line corresponds to the potential distribution of a
single particle in isolation. These curves illustrate how the
potential distribution inside the semiconductor responds to the
presence of an approaching colloid. The particles are covered
with −SiO− groups with surface density Γ ¼ 8 × 1018 m−2.
These groups may release or attach a proton according to
Eq. (1). The parameters for this calculation are pH ¼ 3.5, the
overall electrolyte concentration is 0.925 mM (adjusted by
adding a symmetric monovalent electrolyte), pKþ ¼ −2,
pK− ¼ 6, and the particle doping is 1024 m−3. The dielectric
permitivities were εel ¼ 78.5 for the electrolyte, εsc ¼ 11.7 for Si,
and εox ¼ 3.9 for the 2 nm thick layer of SiO2 [22,23].
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where y and z are distance variables. A detailed description
of the solution and the assumptions made is given in
Supplemental Material [24], but we should emphasize here
that the pressure Πe depends on the electrostatic potentials,
and hence on the separation distance. The total energy of
interaction consists of [5,6]

UðhÞ ¼ UeðhÞ þ UvdwðhÞ ð12Þ
with Uvdw being the van der Waals attractive energy, which
for small separations is UvdwðhÞ ¼ AHa=12h, where AH is
the Hamaker constant [5,6,25].
The total interaction energy given by Eq. (12) is shown

in Fig. 2. The height of the maximum determines the
stability against coagulation. Overcoming the barrier brings
the two particles into the region of very close separations
where the van der Waals attraction completely overpowers
the electrostatic repulsion and leads to irreversible coagu-
lation. The difference between the energy maxima for
doped and undoped semiconductor colloids and the param-
eters listed in Figs. 1 and 2 is slightly more than 4 kBT. It is
due to the fact that the internal charge density redistribution
in the doped semiconductor reduces the potential in the
electrolyte gap between the particle surfaces. Hence, the
electrostatic repulsion for doped particles is less than that
for undoped particles, which leads to a different energy
curve (see Fig. 2). The inset shows the energy change that is
due to the doping. This is a new type of colloidal interaction
that is uniquely characteristic of semiconductor colloids in
aqueous suspension and is very significant in both magni-
tude and range. This effect depends on the doping con-
centration and decreases as the latter goes down and
vice versa.
Suspensions characterized by a combination of van der

Waals and electrostatic interactions are thermodynami-
cally unstable and, given enough time, will ultimately
coagulate. The energy barrier, however, provides kinetic
stability that may allow for sufficient time for different
applications and processing. The rate equation describing
the coagulation of two colloidal particles (formation of
doublets) is [26–28]

dn2
dt

¼ kcn21; ð13Þ

where n2 is the concentration of coagulated pairs (dou-
blets), n1 is the concentration of single particles, t denotes
time, and kc ¼ k0=W is the rate constant.
With k0 we denote the rate constant in the absence of any

long range interactions and energy barriers (the rate is

purely diffusion limited). The effect of slowing down due to
the presence of an energy barrier is taken into account by
the stability factor [28–30]

W ¼ 4a
Z

∞

0

HðhÞ exp½UðhÞ=kBT�
h − 2a

dh; ð14Þ

where HðhÞ ¼ ð4hþ aÞ=4h embodies the hydrodynamic
effects [31], also see the Supplemental Material [24].
For the parameters in Figs. 1 and 2, the coagulation

rate in an undoped sample will be more than 60 times
slower than in the doped sample (see Fig. 3). This is a
significant difference that cannot be ascertained using the
conventional DLVO theory. This new effect is entirely due
the internal mobility and reconfiguration of charges in the
doped semiconductor. Figure 3(a) illustrates how the
stability factor W of the colloidal system depends on
doping [see Eq. (14)]. The relative coagulation rate is
shown in the inset. As the doping level increases, the
doped system becomes more unstable and prone to
coagulation and precipitation. Figure 3(b) illustrates
how a change in the ionic concentration affects the
stability of the colloids.
In the limit where the surface potential is small, jΨsj <

26 mV we have derived Eq. (15) for the surface potential
(see also the Supplemental Material [24])

Ψs ¼
Γδe sinhðeΨN=kBTÞ

½δ coshðeΨN=kBTÞ þ 1�
h
ϵ0ϵelκel tanhðκelh2 Þ þ ϵ0ϵoxϵscκsc

ϵ0þLoxϵscκsc
þ Γδe2½coshðeΨN=kBTÞþδ�

kBT½δ coshðeΨN=kBTÞþ1�2
i : ð15Þ

FIG. 2 (color online). Interaction between colloids. Interaction
energy between undoped (blue particles, full line) and doped (red
particles, dashed line) semiconductor colloids. As the particles
approach the charge density in the doped particles redistribute.
which is illustrated by the gradual color change. The Hamaker
constant used to generate these plots is AH ¼ 5.4 × 10−20 J, and
the particle radius is a ¼ 100 nm. The rest of the parameters are
the same as in Fig. 1. The inset shows the difference between the
two energy curves.
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The inverse Debye lengths are given as κsc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nsce2=ϵscϵ0kBT

p
and κel ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nele2=ϵelϵ0kBT

p
for the semi-

conductor and electrolyte phases, respectively, where nsc
and nel are the number densities of ions, also for the
semiconductor and electrolyte phases, respectively. Equa-
tion (15) allows for the derivation of analytical expressions
for the potential distributions in all phases. Further analysis
provides insight into the functional form of the surface
potential in various limits. In the low doping limit, κsc → 0,
we recover the equivalent expression for charge regulation
at a dielectric-electrolyte interface. Similarly, when the
thickness of the oxide Lox is large such that Lox → ∞ we
again recover the expression for charge regulation at a
dielectric-electrolyte interface. In the high doping, or metal-
like, limit where κsc → ∞ and Lox → 0 the effect from the
redistribution of charges in the semiconductor region is
even stronger, as long as there is an oxide barrier to prevent
the release of ions into solution. In the case of a metal-like
particle without an oxide, the charge regulation formulas
would have to be revisited.
The internal mobility of the charges (electrons and/or

holes) in semiconductor materials has been experimentally
demonstrated and utilized in different sensing applications
[1,2,7–12,32–34]. In this Letter, we used first principle
continuum electrostatics [17] to develop a simple model
that allows one to find the effect of the internal charge
mobility on the external potential distribution and hence on
the electrostatic interaction between two approaching
colloidal spheres. The internal charge redistribution man-
ifests itself as a reduction of the electrostatic repulsion (or
alternatively can be defined as an apparent additional
attractive contribution to the energy, see the inset in
Fig. 2). While one may think that this interaction is similar
to the van der Waals attraction, the truth is that it has a very
different functional dependence on separation. Instead of

following a power law it decays almost exponentially,
which is due to its electrostatic origin. It is very interesting
that the effect of the reduction in the electrostatic repulsion
is primarily dependent on the doping level and much less
on whether the semiconductor particles are n-doped, p
doped, or mixed. In addition to the n-doped particle
interaction (the dashed line in Fig. 2) we have computed
the interaction potentials between p-doped particles as well
as that between an n-doped and a p-doped particle. All
these curves practically collapse onto a single one, which is
almost indistinguishable from the dashed curve in Fig. 2.
This means that the main reason for the observed effect is
that there is a dynamically responsive charged fluid in the
particle interior that responds to potential perturbations.
The polarity of the inner charges is practically unimportant.
The surface chemistry plays a key role in determining the

strength of the interaction between semiconductor dopants
and the electric double layer. The difference between the
chemical equilibria constants, ΔpK ¼ pK− − pKþ, deter-
mines the strength of the charge regulation at the interface
[35]. A large ΔpK allows for larger changes in the surface
potential as the distance h is varied. Particle surfaces with a
low ΔpKwould show little change in stability with doping,
while surfaces with a large ΔpK (i.e., silica, ΔpK ¼ 8)
allow for relatively large changes in surface potential and
hence exhibit large changes in stability due to doping.
The new type of interaction that we have identified has

significant implications on the processing and handling of
semiconductor colloids. The first obvious conclusion is that
doped colloids will be less stable and much more prone to
coagulation than their undoped counterparts. Figure 3 gives
an idea about the relative time windows for kinetic stability.
As mentioned above, the average lifetime for a suspension
of silicon colloid with a 1018=cm3 doping level will be
more than 60 times shorter than that for an undoped sample

FIG. 3. Differences in stability due to doping. (a) Stability of undoped (dashed) and doped colloids (solid) versus semiconductor doping
concentration. The stabilities are useful for calculating the time to coagulation. The inset shows the relative stabilityWundoped=Wdoped versus
doping. The relative stability is useful for calculating the relative times to coagulation for undoped versus doped particles. (b) Stability of
undoped (dashed) and doped colloids (solid) versus the ionic concentration of the electrolyte. The relative stabilityWundoped=Wdoped versus
the ionic concentration of the electrolyte is given in the inset. The rest of the parameters are the same as in Figs. 1 and 2.
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with the same surface chemistry. This effect can be
exploited to separate doped from undoped particles in
aqueous suspensions, or even sort the particles based on
their doping. Heavily doped particles will precipitate faster
and can be separated from the rest by simple filtration or
centrifugation. They then can be redispersed using soni-
cation. The procedure can be repeated multiple times to
obtain particles with a narrow distribution of the doping
levels.
Increasing the pH beyond the isoelectric point leads to

an increase in the value of the surface potential and hence to
an increase in the repulsion and stability of the suspension.
Similar will be the effect of reducing the background
electrolyte concentration, which will extend the range of
the overall electrostatic repulsion. Colloidal suspensions
can be used to fabricate ordered crystal-like structures that
have excellent properties for photonic applications [36].
Figure 2 implies that among other things the particle doping
may have an effect on the spacing and ordering in crystals
composed of semiconductor colloidal particles. Doped
particles will be spaced on the average closer than undoped
particles. For example, a close inspection of the energy
curves in Fig. 2 show that the average spacing of the doped
particles will be about 2 nm smaller than that for the
undoped particles. We are convinced that a better under-
standing of the interface between semiconductor materials
and electrolyte solutions will be instrumental in the effort to
design novel “smart”materials at the micro- and nanoscale.
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