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We investigate the connection between local structure and dynamical heterogeneity in supercooled
liquids. Through the study of four different models, we show that the correlation between a particle’s
mobility and the degree of local order in nearby regions is highly system dependent. Our results suggest
that the correlation between local structure and dynamics is weak or absent in systems that conform well to
the mean-field picture of glassy dynamics and strong in those that deviate from this paradigm. Finally, we
investigate the role of order-agnostic point-to-set correlations and reveal that they provide similar
information content to local structure measures, at least in the system where local order is most pronounced.

DOI: 10.1103/PhysRevLett.113.157801 PACS numbers: 61.20.Ja, 05.10.−a, 05.20.Jj, 64.70.Q−

Supercooled liquids display markedly heterogeneous
dynamics, despite possessing structural properties that
appear nearly unchanged from those of normal liquids
from which they are prepared [1]. While there has been
intense focus on understanding dynamical heterogeneity in
a wide variety of systems, the structural origin of this
phenomenon is not well understood [2,3]. Simulations of
model supercooled liquids are useful for understanding the
connections between structure and dynamics because
particle locations may be followed precisely for all times.
Nonetheless, new theoretical tools are needed to filter out
extraneous detail from the key structural and dynamical
fluctuations in glassy systems.
One particularly useful simulation-based tool for quantify-

ing the influence of structure on dynamics is the isoconfi-
gurational ensemble, where a large number of molecular
dynamics simulations are initiated from the same starting
configuration with momenta sampled randomly from a
Boltzmann distribution [4,5]. Under glassy conditions, spa-
tial heterogeneities are immediately evident in the isoconfi-
gurational displacement (or propensity) field. A reasonable
hypothesis is that particles with low propensity have a larger
measure of local structural stability. Surprisingly, however,
simple structural quantities, such as free volume and local
potential energy, show little correlation with the hetero-
geneity of the propensity field [6]. In some models, localized
soft modes [7–9] or unstable modes [10] appear to correlate
strongly with propensity, but the degree of universality of this
connection has not been thoroughly investigated.
Recently, focus has turned to the study of specific

structural motifs and their putative connection with the
dynamics of supercooled liquids. The notion that the
frustration of local order incommensurate with bulk crys-
talline periodicity may be related to glass formation is an
old one [11–14]. New evidence for the growth of domains

associated with local packing motifs has been presented for
several simple [15] and realistic model systems [16], where
particles tend to be found in certain locally preferred
structures (LPS) with increased supercooling. As a general
rule, more fragile systems display a more rapid increase in
LPS concentration and domain extent [15,16]. In some
systems, a correlation between the size and location of
LPS and slow dynamics has been observed [17,18],
although the quantitative meaning of the correlations
observed remains, in a statistical sense, obscure.
Point-to-set (PTS) correlations have emerged as an

alternative quantifiable metric of amorphous ordering.
PTS correlations measure the decrease of configurational
entropy imposed by the presence of particles pinned in an
equilibrium configuration [19,20]. The length scale asso-
ciated with PTS correlations has been demonstrated to grow
upon increased supercooling in several systems [20–22],
although its variation is rather modest over the dynamical
range currently accessible in simulations [23]. Nonetheless,
several observations indicate that the growing PTS length
scale should ultimately drive the dramatic increase in
relaxation times in supercooled liquids [24–26]. It should
be noted that PTS correlations, as well as other recently
proposed measures of static correlations [27,28], are “order
agnostic” [23], and therefore, their growth does not
necessarily connect to the emergence of specific local
structures, such as those identified in the LPS studies.
In this Letter, we quantify the correlation between

static structure and dynamical heterogeneity in supercooled
liquids in a statistically precise sense and within a coherent
simulation framework. We demonstrate that seemingly
similar systems may differ dramatically with respect to the
degree to which specific local structural motifs correlate with
dynamics. Our results indicate that scenarios connecting LPS
cluster formation and glassy behavior [29,30] cannot be
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generically correct. The observed model dependence sug-
gests instead that local structural quantities play a key role
in systems with large deviations from mean-field glassy
behavior. Finally, we show that a connection exists between
growing PTS correlations and LPS in systems where LPSs
are strongly predictive of dynamical heterogeneity.
The first two models we study are binary Lennard-Jones

mixtures, namely the Kob-Andersen (KA) system [31] and
the Wahnström (Wahn) system [32]. The definition of these
models and their LPS statistics have been extensively
detailed in Ref. [33]. The KA system is an 80∶20 mixture,
while the Wahn system is equimolar. As a third system, we
study a binary mixture of harmonic spheres (Harm) at a
density such that that jamming is approached by lowering
temperature near to zero (ρ ¼ 0.675) [34]. In all cases, one
species is smaller (B for KA and Wahn, A for Harm) and is
intrinsically more mobile. Results for the small particles
will be reported in the main text and for the large particles
in the Supplemental Material [35]. In the following,
we discuss all quantities using standard reduced units.
For all three systems, we study systems with N ¼ 1000.
Further simulation details and a description of the LPS
in each system can be found in the Supplemental
Material [35].
While all of the above models are simple binary mixtures

with short-ranged interaction potentials, their local struc-
tures differ significantly. For each model, we identify
particles participating in LPS through a Voronoi analysis
[35]). These LPS correspond to icosahedra, bicapped
square antiprisms, and distorted icosahedral structures in
Wahn, KA, and Harm, respectively. The relative abundance
of these LPS at low temperatures is model dependent: it is
fairly significant in the Wahn model (about 10% of the
particles are at the center of a LPS) and weaker in the other
models. In the KA model, this is due to the fact that twisted
bicapped prisms are mostly centered around the small
particles, which constitute the minority species.
In order to investigate the connection between the LPS in

each system and dynamical behavior, we perform simu-
lations in the isoconfigurational ensemble at supercooled
temperatures, T ¼ 0.588 for the Wahn, T ¼ 0.45 for the
KA, and T ¼ 5.5 for the Harm. These temperatures
correspond roughly to the same degree of supercooling,
as measured by the relative distance (about 3%–6%) from
their fitted Mode-Coupling temperatures, Tc [35]).
We select 40 (20) equilibrated configurations for the KA

and Wahn (Harm) systems and perform the Voronoi
analysis as discussed above. For each configuration, we
performed 200 (100) NVT simulations in the isoconfigura-
tional ensemble. From the simulations starting from
each configuration, we compute the particle mobilities
μiðtÞ≡ hjriðtÞ − rið0Þjiiso ≡ hjδriðtÞjiiso. To quantify the
number of LPS associated with a given particle, we count
the number of structures deemed locally preferred in a
spherical region of radius l around each particle (nLPS).
All results reported here are nearly insensitive to this l

value in the range we have investigated 1.5 ≤ l ≤ 3.0, and
we chose to report results only for l ¼ 2.5.
In Figs. 1(a)–1(c), we show the combined probability

distribution of μi and nLPS for the three systems introduced
above. We quantify correlation by using the Spearman rank
correlation coefficient K [45], which has been used
previously in a similar context [6]. K is 1 if two quantities
are related by a monotonically increasing function and −1
if by a decreasing one. K values are shown in the top-right
corner of each histogram. We see visually and quantita-
tively that the correlation is much stronger in the Wahn
system than in the KA and Harm systems. For comparison,
the probability distributions for correlation between
mobility and local energy (Ei ¼ ðei þ

P
j∈neighðiÞejÞ=

ð1þ jneighðiÞj), where jneighðiÞj is the number of neigh-
bors in the Voronoi structure around particle i) are shown in
Figs. 1(d)–1(f). The correlation is fairly significant in the
two Lennard-Jones mixtures and much weaker in the Harm
system.

FIG. 1 (color online). Interpolated histograms of particle mobil-
ity. Numbers at the top right indicate Spearman rank correlation
coefficients K [45]. The first column shows the correlation
between mobility and nLPS with the LPS defined in the text.
The second column shows correlation withEi, the sum of a particle
and its neighbors’ pair energies. White dotted lines show the
average value of the quantity on the horizontal and vertical axes.
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Inspection of Fig. 1(a) reveals a long tail in the histogram
of nLPS values. From these data, we can predict that a
particle in a domain rich in icosahedral structures will be
very immobile. Looking at the data at nLPS ¼ 0 instead, we
see that such particles will have higher than average
mobility. However, slow and fast particles have a wide
range of nLPS values. In Fig. 2 we show the level of
“precision” [45] in predicting which particles are slow
based on nLPS and Ei for the models studied, as well as the
K values. Here, precision is defined as the percentage of
particles in the top (bottom) 2% of nLPS (Ei), which are also
in the bottom 10% of μiðδtÞ. All trends discussed are
insensitive to the particular percentiles chosen for this
definition of precision (see the Supplemental Material [35]
for further details, including a discussion of sample-to-
sample fluctuations in these quantities).
When viewed from this statistical perspective, several

striking features are observed. For the Wahn system, LPSs
are highly predictive of slow dynamics. In particular, using
our definition of precision, one may “predict” the location
of slow particles with near perfect accuracy up to τα, and
such a correlation continues to grow to the longest times we
investigated. In the KA system, local energy is more
predictive of slow dynamics than LPS locations, and the
correlation for both local energy and nLPS in KA and Harm
is far lower than in the Wahn system.
We may thus conclude that the correlation between

dynamics and local structural metrics such as nLPS is highly
system dependent. What may be taken from this dramatic
degree of variability? Among the three models studied, the
Wahn system shows the largest departures from mean-field
behavior. Namely, Wahn exhibits large violation of the
Stokes-Einstein relation, sizable deviations from time-
temperature superposition, and large inconsistencies between
fitted mode-coupling exponents [35,46]. From this perspec-
tive, the KA system shows moderate deviations from mean-
field behavior. This leads us to consider whether the
correlation between local structural order and slow dynamics
might be connected to how much a model system conforms
to the mean-field paradigm. While the Harm system does not

uniformly display mean-field behavior, results from finite
size studies [47] and the existence of a nonmonotonic
dynamical length scale [34] suggest that its behavior is at
least partially harmonious with mean-field theory. This leads
us to posit a connection between a high degree of local
structure-dynamics correlation and strong spatial fluctuations
which are manifest in systems that deviate from mean-field
behavior.
To better test this notion, we study a fourth system, the

high-density (ρ ¼ 2.0) Gaussian core model (GCM). The
GCM is a single-component fluid with Gaussian repulsions
[48,49], which has all the hallmarks of glassy behavior
while matching mean-field predictions of dynamical expo-
nents, strongly suppressed non-Gaussian fluctuations and
minimal Stokes-Einstein violation [49]. This mean-field
behavior seems to arise naturally from the long ranged and
ultrasoft interaction potential (see discussion in the
Supplemental Material [35]).
In Fig. 2(d) we show results for N ¼ 3456Gaussian core

particles at T ¼ 3.2 with 100 isoconfigurational runs
initiated from 20 independent configurations. We note that
this temperature is slightly higher, relative to Tc ¼ 2.7, than
the one used in the other models, but corresponds instead
to the same relative increase in relaxation time as observed
for the Wahn system [35]. We found that distorted crystal-
like structures constitute the LPS of the model (the under-
lying stable crystal at the studied density is bcc). In
agreement with our expectations, the correlation between
nLPS and dynamics in the GCM system is very low, just as
in the Harm system, and only marginally improves as t
increases [50]. It may appear that the correlation between
nLPS and dynamics in both the KA and GCM system are
superficially similar. However, the LPS in the GCM system
are simple crystalline motifs that exist because of the
difficulty of avoiding such particle arrangements in a
monatomic system. In this sense, we view the correlation
of both nLPS and Ei as significantly weaker in the GCM
system when compared with KA.
It would be natural to speculate that in systems such as the

Harm and GCM models, there simply exists no connection

FIG. 2 (color online). Time dependence of predictability metrics and correlation coefficients as a function of time for four models.
Closed symbols correspond to data comparing mobility with nLPS as in the left-hand column of Fig. 1 and open symbol comparing local
energy Ei (defined in text) to mobility, as in the right-hand column of that figure. K is the Spearman rank correlation coefficient [45].
Precision is defined as the percentage of particles in the top (bottom) 2% of nLPS (Ei), which are in the bottom 10% of μi. Horizontal
dashed lines show the result for the precision metrics that would result from random classification of particles as slow.
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between structure and dynamics. However, this statement is
incorrect. We have used the R4-ratio analysis of Berthier and
Jack [51] to quantify the structural component of the
dynamic fluctuations. As detailed in the Supplemental
Material [35], we found that all four systems analyzed in
Fig. 2 show a marked correlation between structure and
dynamics, despite the fact that no specific structural motif
connects to dynamics in the more mean-field like models.
These striking results will be a subject for future inves-
tigations. Here we just point out an interesting analogy with
the behavior of mean-field p-spin models [52], which do
display large values of R4 close to the dynamic transition.
One may take the inability of specific structural metrics,

such as LPS determined from Voronoi analysis, to correlate
universally with dynamics in supercooled liquids as an
indication that a more general form of growing amorphous
order must be implicated. In the remaining of this work, we
focus on structural correlations embodied in point-to-set
and related length scales [21,22,25,26]. In order to show
that this type of order may subsume specific structural
metrics, we investigate the connection between local order
as measured by nLPS and PTS correlations.
The PTS length scale is extracted by calculating the

range over which spatial correlations imposed by an
equilibrium amorphous spherical boundary decay. We first
establish that it is possible to ergodically sample cavities at
some Rcav using the particle size annealing (PSA) method
detailed in Ref. [22]. In brief, we monitor the overlap q, a
measure of the similarity between the initial configuration
in the cavity and that at a later time t. The overlap is
defined as qðRcav; tÞ ¼ ðρl3 ~NÞ−1 P ~N

i¼1hniðtÞnið0Þi where
the center of the cavity has been tiled into ~N ¼ 125 cubes
of side length l ¼ 0.36, small enough such that the cell
occupancy niðtÞ is always zero or one. We use both regular
Monte Carlo (MC) sampling and a sampling where the
particle diameters are shrunk to 60% of their original size
and grown back in and check that the q values agree at long
times. In the limit of large cavity and long time, qðtÞ will
tend to the bulk value qb ¼ ρl3, and thus, this value is
conventionally subtracted from q.
We carry out these tests for the Wahn model. The strong

icosahedral ordering in this model makes it an ideal system
to probe the connection between local order and the spatial
distribution of the overlap. In Fig. 3(a) we show that for
Rcav ¼ 3.0 q is sampled ergodically. We then take 30 of the
Wahn configurations used earlier and perform two standard
MC simulations for cavities centered at 27 positions in
each. The longtime overlap value is extracted from each
cavity, and the number of icosahedral centers within the
cavity as well as the one within the inner R ¼ 2.5 of
the cavity is calculated. We find that high overlap cavities
generally have high nLPS and vice versa. This implies that
(for the Wahn system) the cavity simulations are mostly
probing the same type of local ordering measured by the
Voronoi construction, although it does not necessarily mean
that the correlation length measured by doing cavity

simulations at a series of radii is the same as would be
measured by the extent of LPS domains.
In conclusion, we have demonstrated that the correlation

between local structural metrics (e.g., Ei and nLPS) and
dynamics in supercooled liquids is highly system dependent.
In models such as the Wahn mixture, accurate predictions of
heterogeneous dynamics may be made on the basis of a
single structural marker while essentially no correlation
exists in mean-field like systems such as the GCM.
However, a strong link between some aspect of static
structure and dynamics does exist, as signified by the sizable
R4 ratio observed in all the systems we have studied. Despite
being order agnostic, PTS correlations appear to show a
connection with specific types of local order such as Voronoi
signatures in systems whose dynamics may be predicted by
the location of such structural motifs. Furthermore, previous
work has detected an apparent connection between the
growth of relaxation times and order agnostic length scales
in systems where the connection between relaxation times
and specific structural metrics is not very strong [22,25,26].
These facts suggest that PTS correlations may provide a
more general description of the key static fluctuations that
determine dynamical behavior in supercooled liquids.

We thank Mark Ediger and Asaph Widmer-Cooper for
stimulating discussions. Simulations were executed in part

FIG. 3 (color online). (a) Cavity overlaps and PSA overlaps
(with the value for a bulk system qb subtracted) indicating
ergodic sampling at this cavity size and temperature. The dashed
line shows the overlap probability distribution Pðq − qbÞ. (b) On
average, cavities containing a large number of LPS centers have
high overlap. “Inner” points count only LPSs which are within
R ¼ 2.5 of the center of the cavity. The dashed line shows the
average overlap and arrows show the average number of LPS.
(c) and (d) show the full data distribution and Spearman rank
correlation coefficients [45]. The data in (b) are obtained from
(c) and (d) by averaging over vertical slabs of width 3.
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