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We propose a technique to overcome phase mismatch in Josephson-junction traveling wave parametric
amplifiers in order to achieve high gain over a broad bandwidth. Using “resonant phase matching,” we
design a compact superconducting device consisting of a transmission line with subwavelength resonant
inclusions that simultaneously achieves a gain of 20 dB, an instantaneous bandwidth of 3 GHz, and a
saturation power of −98 dBm. Such an amplifier is well suited to cryogenic broadband microwave
measurements such as the multiplexed readout of quantum coherent circuits based on superconducting,
semiconducting, or nanomechanical elements, as well as traditional astronomical detectors.
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Josephson parametric amplifiers [1–5] routinely
approach quantum-noise-limited performance [6–9] and
are currently used in sensitive experiments requiring high-
fidelity detection of single-photon-level microwave signals,
such as the readout and feedback control of superconducting
quantum bits [10–17], and magnetometry with the promise
of single-spin resolution [3]. To obtain a large parametric
gain, the interaction time with the material nonlinearity—
the order-unity nonlinear inductance of the Josephson
junction—must be maximized. Current Josephson para-
metric devices increase the interaction time by coupling the
junction to a resonant cavity, albeit at the expense of
instantaneous bandwidth. In contrast, traveling wave para-
metric amplifiers (TWPAs) [18–21] achieve long interaction
times by utilizing long propagation lengths rather than
employing multiple bounces in a cavity, thereby avoiding
the inherent gain-bandwidth trade-off associated with cavity
based devices. A major challenge in the design of TWPAs,
however, is that optimum parametric gain is achieved only
when the amplification process is phase matched. TWPAs
based on Josephson junctions have been investigated theo-
retically [22–25] and experimentally [26–28] but have not
demonstrated sufficient gain, in part due to phase-matching
limitations, to replace existing semiconductor amplifier
technology. TWPAs based on the weaker nonlinear kinetic
inductance of thin titanium nitride wires and phase matched
through periodic loading have also been demonstrated
[29,30], but they require significantly longer propagation
lengths and higher pump powers to achieve comparable
gain. In this Letter, we show that by adding a resonant
element into the transmission line, phase matching and
exponential gain can be achieved over a broad bandwidth.
The proposed traveling wave parametric amplifier con-

sists of a Josephson-junction-loaded transmission line
[Fig. 1(a)] with a capacitively coupled parallel LC reso-
nator shunt to allow phase matching. The LC resonator

shunt [colored red in Figs. 1(a) and 1(b)] creates a stop
band [Fig. 1(c), red line] in the otherwise approximately
linear dispersion relation [Fig. 1(c), black dashed line].
In the presence of a strong copropagating pump wave, a
weak signal propagating in the TWPA is amplified through
a four wave mixing interaction. Four wave mixing in the
weak pump limit is perfectly phase matched for a linear
dispersion; however, a strong pump modifies the phase
velocities through self- and cross phase modulation, gen-
erating a phase mismatch and preventing exponential gain.
We compensate for this phase mismatch by tuning the
pump frequency near the pole of the LC resonator. In a
dissipationless system such as a superconducting circuit, a
resonant element opens a stop band [inset of Fig. 1(c)] in
which the wave vector is purely imaginary, surrounded by
regions in which the wave vector is purely real and varies
from 0 to π=a, where a is the size of the unit cell. The wave
vector of the pump can be set to arbitrary values by varying
the frequency with respect to the resonance in order to
eliminate the phase mismatch.
We now calculate the value of the phase mismatch and

the expected device performance when phase matching is
achieved. We use a first principles model for the nonlinear
dynamics in the Josephson-junction transmission line [24,25],
which has been validated by experiments [28]. By making
the ansatz that the solutions are traveling waves, taking the
slowly varying envelope approximation, and neglecting pump
depletion, we obtain a set of coupled wave equations which
describe the energy exchange between the pump, the signal,
and the idler in the undepleted pump approximation (see
Supplemental Material [31] for the derivation):

∂as
∂x − iκsa�i e

iðΔkLþ2αp−αs−αiÞx ¼ 0; ð1Þ

∂ai
∂x − iκia�seiðΔkLþ2αp−αs−αiÞx ¼ 0; ð2Þ
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where as and ai are the signal and idler amplitudes, ΔkL ¼
2kp − ks − ki is the phase mismatch in the low pump power
limit, and the coupling factors αp, αs, and αi represent the
change in thewavevector of the pump, the signal, and the idler
due to self- and cross phasemodulation induced by the pump.
The coupling factors depend on the circuit parameters (see
Eqs. (15), (16), and (17) in the Supplemental Material [31])
and scale quadratically with the pump current. Maximum
parametric gain is achieved when the exponential terms are
constant: the phase mismatch, Δk ¼ ΔkL þ 2αp − αs − αi,
must then be zero. The coupledwave equations (1) and (2) are
similar to the coupled amplitude equations for an optical
parametric amplifier [32] and have the solution

asðxÞ ¼ asð0Þ
�
cosh gx −

iΔk
2g

sinh gx

�
eiΔkx=2 ð3Þ

with the gain coefficient g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κsκ

�
i − ðΔk=2Þ2

p
. For zero

initial idler amplitude and perfect phase matching, this leads
to exponential gain, asðxÞ ≈ asð0Þegx=2. For poor phase

matching, g is imaginary and the gain scales quadratically
with length rather than exponentially.
Without resonant phase matching, the parametric ampli-

fication is phase matched at zero pump power, but rapidly
loses phase matching as the pump power increases.
Neglecting dispersion and frequency dependent imped-
ances, the exact expression for the phase mismatch can
be simplified to yield Δk ≈ 2kp − ks − ki − 2kpκ, where
κ ¼ ða2k2pjZcharj2=16L2ω2

pÞðIp=I0Þ2. The nonlinear proc-
ess creates a pump power dependent phase mismatch which
can be compensated for by increasing the pump wave
vector.
In Fig. 2, we show the increase in gain due to resonant

phase matching for the device described in Fig 1. Resonant
phase matching increases the gain by more than one order
of magnitude from 10 dB to 21 dB [Fig. 2(a)] for a pump
current of half the junction critical current and a pump
frequency, 5.97 GHz, on the lower frequency tail of the
resonance, as shown in the inset of Fig. 1(c). The increase
in the pump wave vector due to the resonance compensates
for the phase mismatch from cross and self-phase modu-
lation [Fig. 2(b), black dashed line], leading to perfect
phase matching near the pump frequency [Fig. 2(b),
purple]. For higher pump currents, the benefits are even
more pronounced: the RPM (resonantly phase matched)
TWPA achieves 50 dB of gain (compared to 15 dB for the
TWPA) with a pump current of 0.7I0 [Fig. 2(c)]. Achieving
50 dB of gain over a 3 GHz bandwidth would require a
larger junction critical current than used here to prevent
gain saturation by vacuum photons. By varying the pump
frequency relative to the resonance, the parametric ampli-
fication can be phase matched for arbitrary pump currents
[Fig. 2(d)]. Due to this ability to tune the pump phase
mismatch over the entire range of possible wave vectors,
this technique is highly flexible.
We now examine the scaling relations for the gain in

order to obtain the optimum gain through engineering
the linear and nonlinear properties of the transmission
line. Simplifying the expression for the gain by assuming
perfect phase matching and neglecting the effects of the
resonant element and the junction resonance on the
dispersion, we find that the exponential gain coefficient
is directly proportional to the wave vector g ∝ kpI2p=I20. See
the Supplemental Material [31] for full expressions for the
wave vector, characteristic impedance, and the gain with
parameter variations using stochastic calculus [33]. Thus,
for a fixed pump strength relative to the junction critical
current, the gain coefficient is proportional to the electrical
length. In other words, a larger wave vector and thus slower
light leads to a larger effective nonlinearity due to the
higher energy density; this effect is well known in photonic
crystals [34]. For convenient integration with commercial
electronics, the characteristic impedance is designed to be
Zchar ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=ðCþ CcÞ

p
≈ 50 Ω, which fixes the ratio of

the inductance and the capacitance. The wave vector is

FIG. 1 (color online). Resonantly phase-matched traveling
wave parametric amplifier. (a) Signal photons are amplified
through a nonlinear interaction with a strong pump as they
propagate along the 2000 unit cell transmission line with a lattice
period of a ¼ 10 μm. (b) In each unit cell a Josephson junction, a
nonlinear inductor, is capacitively coupled to an LC resonator.
The circuit parameters are Cj¼329 fF, L ¼ 100 pH, C ¼ 39 fF,
Cc ¼ 10 fF, Cr¼7.036pF, Lr ¼ 100 pH, I0 ¼ 3.29 μA. (c) The
LC circuit opens a stop band (red line) in the dispersion relation
of the TWPA (black dashed line) whose frequency depends on the
circuit parameters. In the inset, we plot the pump frequency to
phase match a pump current of 0.3I0 (blue), 0.5I0 (purple), and
0.7I0 (green), where I0 is the junction critical current.
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proportional to the product of the capacitance and the
inductance k ≈ ω=a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðCþ CcÞ

p
. Increasing both the

capacitance and the inductance or decreasing the unit cell
size are effective strategies for increasing the gain per unit
length while maintaining impedance matching for a 50 ohm
load. The current design represents a trade-off between unit
cell size and component values which is convenient to
fabricate.
Next we consider the dynamic range of the amplifier.

The upper limit of the dynamic range is due to pump
depletion: the pump transfers energy to the signal and the
idler, which reduces the parametric gain. To investigate this
regime, we solve for the coupled wave equations without

the undepleted pump approximation, resulting in four
coupled nonlinear differential equations (Eqs. (43)–(46)
in the Supplemental Material [31]), which are solved by
transforming them to real differential equations and
expressing them as a Jacobi elliptic integral [35]. The gain
as a function of input signal power calculated including
pump depletion (solid lines in Fig. 3) is in excellent
agreement with the approximate yet general solution for
pump depletion (dashed lines in Fig. 3) in a four photon
parametric amplifier [36]:

G ¼ G0

1þ 2G0I2s=I2p
; ð4Þ

where G0 is the small signal gain in linear units and Is
and Ip are the input signal and pump currents. From Eq. (4),
the gain compression point is approximately P1 dB ¼
Pp=ð2G0Þ. Thus, the threshold for gain saturation is inde-
pendent of the specific device configuration and depends
only on the small signal gain and the pump power. The

FIG. 3 (color online). Effect of pump depletion on dynamic
range. (a) The gain as a function of input signal current
(normalized to the pump current) for a small signal gain of
10, 15, and 20 dB obtained with a pump current of 0.5I0 and
device lengths of 1150, 1530, and 1900 unit cells. The approxi-
mation for the gain depletion (dashed lines) from Eq. (4) is in
excellent agreement with the result obtained by solving the full
nonlinear dynamics (solid lines). (b) P1 dB, the input signal power
where the gain decreases by 1 dB, as a function of junction
critical current I0 with the pump current fixed at 0.5I0. The black
dashed line corresponds to the device considered in this Letter,
which has a gain compression point of P1 dB ¼ −87, −93, and
−98 dBm, for a gain of 10, 15, and 20 dB for a junction critical
current of I0 ¼ 3.29 μA.

FIG. 2 (color online). Gain of the RPM TWPA. (a) The gain as
a function of signal frequency in dB with RPM (purple line) and
without (black dashed line) for a pump current of 0.5I0 and a
pump frequency of 5.97 GHz. (b) The phase mismatch with
(purple line) and without (black dashed line) RPM. (c) The peak
gain as a function of pump current without RPM (black dashed
line) and with RPM for three different pump frequencies, which
phase match the parametric amplification for pump currents of
0.3I0 (red line), 0.5I0 (purple line), and 0.7I0 (green line). (d) The
phase mismatch as a function of pump current. The dots mark the
pump current where the parametric amplification is perfectly
phase matched.
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gain as a function of input signal current is plotted for three
values of the small signal gain in Fig. 3(a). The signal current
at which the gain drops by 1 dB is marked on the curves
of Fig. 3(a). With a pump current of 0.5I0, the signal
power where the gain decreases by 1 dB is −87, −93, and
−98 dBm, for a small signal gain of 10, 15, and 20 dB,
respectively. These gain compression points are consistent
with the approximate relation with the pump power of
−69 dBm. The dynamic range of the TWPA is significantly
higher than a cavity based Josephson parametric amplifier
with the same junction critical current since the lack of a
cavity enables a higher pump current before the Josephson
junction is saturated.
To further increase the threshold for gain saturation,

the junction critical current can be scaled up, as seen in
Fig. 3(b). However, increasing the junction critical current
decreases the inductance, which reduces the wave vector,
leading to a weaker nonlinearity. One potential solution is
to use N Josephson junctions, each with a critical current
I0=N in a series as a superinductor [37]. The 1 dB power
then scales as

ffiffiffiffi
N

p
, leading to a larger dynamic range at the

expense of a more complex fabrication.
We now estimate the potential for third or higher

harmonic generation, which would cause pump depletion
and distortion through self steepening [38,39]. From the
coupled wave equations describing third harmonic gener-
ation, we find that the third harmonic is poorly phase
matched and less than 0.1% of the pump is converted to the
third harmonic (Eq. (41) and Fig. 1 in the Supplemental
Material [31]).
Resonant phase matching has an important advantage

over dispersion engineering throughperiodic loading,which
has been used to phase match TWPAs based on the weaker
nonlinear kinetic inductance [29,30]. A disadvantage of
periodic loading is the potential phasematching of backward
parametric amplification. Dispersion engineering through
periodic loading opens a photonic band gap (Fig. 4) near
the pump frequency and through band bending changes
the pumpwave propagation constant to phasematch forward
parametric amplification. Periodic loading creates an effec-
tive momentum inversely proportional to the periodicity of
the loading G ¼ 2π=Λ, where Λ is the periodicity of the
loading andG is the reciprocal lattice vector. The periodicity
is chosen so that the stop band is at G=2 ≈ kp. In such a
periodic system, the phase matching relation needs only to
be satisfied up to an integer multiple of the reciprocal lattice
vector [40]. As can be seen from the phase-matching
relation, the effective momentum from the lattice phase
matches the parametric amplification process for a backward
propagating signal ΔkL;b ¼ 2kp þ ks þ ki þ nG ≈ 0 for
n ¼ −2. Under this condition, any backward propagating
photons present in the system will be amplified, leading
to gain ripples and a reduced threshold for parametric
oscillations. Due to imperfect impedance matching over
the operating band of the amplifier, a weak standing wave

condition will be set up in the nonlinear transmission line
due to the return loss at the output and the input. If the return
loss in dB isR, then themagnitude of the standing signalwill
be of order 2R. However, the signal experiences some gain
(in dB) in the forward and reverse directions, Gf and Gr.
If Gf þGr þ 2R approaches unity, the device becomes a
parametric oscillator. The proposed resonant phase match-
ing technique phase matches only the forward parametric
amplification process, so themaximumgain before the onset
of parametric oscillations may be higher than in a device
utilizing periodic loading.
In conclusion, we have proposed a traveling wave

parametric amplifier which is phase matched by subwave-
length resonant elements in order to achieve 20 dB of gain,
3 GHz of bandwidth, and a saturation power (P1 dB) of
−98 dBm. This device will be well suited to multiplexed
readout of quantum bits and astronomical detectors.

FIG. 4 (color online). Band structure of resonantly phase
matched and periodically loaded TWPAs. The parametric
amplifier without a resonant element [(a), black only], with a
resonant element [(a), black and red], and with periodic loading
(b): every 37th unit cell has a slightly different capacitance and
inductance (green). (c) The wave vector as a function of
frequency for the TWPA (black dashed line), RPM TWPA
(red line), and TWPA with periodic loading (green lines). The
yellow shaded region indicates the photonic band gap due to the
periodic loading. The main difference between the photonic band
gap and the resonator is the edge of the Brillouin zone. For the
resonant element, the zone boundary is at π=a, while the other
periodically loaded transmission line has zone boundary at
π=ð37aÞ, which is determined by the period of the loading.
The effective momentum due to the periodic loading is close to
kp, which may phase match backward parametric amplification.
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Applying metamaterial design techniques to nonlinear
superconducting systems may yield a number of useful
devices for circuit quantum electrodynamics, such as
backward parametric amplifiers or mirror-less optical para-
metric oscillators [41].
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