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We develop and implement a new quantum molecular dynamics approximation that allows fast and
accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully
designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum
are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral
Monte Carlo calculations for microscopic features such as the electron density as well as the equation of
state. The present approach does not scale with temperature and hence extends to higher temperatures than
is accessible in the Kohn-Sham method and lower temperatures than is accessible by path integral Monte
Carlo calculations, while being significantly less computationally expensive than either of those two
methods.
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A significant challenge of high energy density physics is
the determination of the fundamental properties of plasmas
(e.g., equation of state, transport properties) over a wide
range of temperatures and densities [1,2]. Systems of
particular focus include warm dense matter [3], inertial
confinement fusion, notably, the compression pathway to
ignition, and astrophysical plasmas. Two methods have
emerged as standards for such calculations which have
yielded quality results. Those are quantum molecular
dynamics based on the Kohn-Sham density functional theory
(DFT) [4–6] and path integral Monte Carlo (PIMC) calcu-
lations [7,8]. Because of the nature of the method, PIMC
calculations become prohibitive as the temperature is
decreased and Kohn-Sham DFT becomes prohibitive with
increasing temperature as the number of required orbitals
increases with temperature and, in general, the method scales
as the cube of the number of orbitals. It is possible to find the
region of overlap for these calculations, but such a region is
generally difficult for both methods [8,9]. For example, with
deuterium at 4 g/cc overlap, calculations have be done at
temperatures 5–20 eV, while for carbon very expensive
overlap calculations have been done from 40 to 60 eV; for
still heavier elements such as aluminum and iron, PIMC
calculations do not exist and Kohn-Sham molecular dynam-
ics have not been pushed much above 10 eV [10,11]. In
this Letter, we develop and implement an orbital-free DFT
formulation which provides accuracy at the level of Kohn-
Sham DFT and PIMC calculations at significantly lower
cost, while spanning from low to high temperatures.
In DFT, the fundamental quantity is the free energy,

which is minimized to find the electron density. For a given
ionic configuration the free energy is a functional of the
electron density n and is given by [12]

F½n� ¼ Fs½n� þ FH½n� þ Fxc½n� þ Fei½n�; ð1Þ

where Fs is the noninteracting free energy comprised of
both kinetic and entropic parts, FH is the Hartree energy or
direct Coulomb interaction between the electrons, Fei is the
electron-ion Coulomb interaction, and Fxc is defined as
the remainder of the total free energy, which includes the
quantum mechanical exchange and correlation as well as
the excess kinetic and entropic terms. Of the contributions,
neither Fs nor Fxc have explicitly calculable forms. Given
the same orbital-free Fxc approximation, the only differ-
ence in the approach of the orbital-free DFT from the
Kohn-ShamDFT is that the noninteracting free energy Fs is
approximated by a density functional instead of being
exactly obtained through the calculation of single particle
orbitals [13]. Thus, the orbital-free DFT [3] returns to a
pure DFTwhich, as given by the Hohenberg-Kohn-Mermin
theorems [14,15], is an exact theory.
Significant efforts have been made at zero temperature in

developing advanced orbital-free functionals with high
quality results [16–22]. Though without analogous efforts,
in recent years the orbital-free approach at finite temper-
ature has gained attention, with most results being for hot
dense systems where the venerable Thomas-Fermi approxi-
mation is employed for Fs [23–25]. The work of Perrot
offered a density gradient correction to Thomas-Fermi that
improves results moderately [26,27]. Other more recent
semilocal functionals [28] have also been considered. None
of these functionals, though, have reached the accuracy of
Kohn-Sham across temperature regimes.
In this work we develop and implement an advanced

density functional for Fs, valid at zero temperature as well
as finite temperature, which provides a highly accurate
agreement with the Kohn-Sham results, yet is temperature
independent in computational cost, since the dependence is
on the density only.
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We now give a summary of our functional. Further
details of individual terms, and all other quantities neces-
sary for quantum molecular dynamics implementation are
given in the Supplemental Material [29]. The proposed
functional for the noninteracting free energy is of the
following form:

Fs½n� ¼ FTF½n� þ βFvW½n� þ Fa;b½n�: ð2Þ

Here the first term on the rhs is the familiar Thomas-Fermi
[30] term

FTF½n� ¼
Z

fTF(nðrÞ)dr; ð3Þ

where fTF is just the noninteracting electron gas energy
per volume at density n. The second term on the rhs is
the proposed extension of the semilocal von Weiszäcker
term

βFvW ½n� ¼
ℏ2

2me

ZZ
½(∇n1=2ðrÞ) · (∇n1=2ðr0Þ)�

× ½δðr − r0Þ þ βðjr − r0jÞ�dr0dr: ð4Þ

In the limit βðjr − r0jÞ ¼ 0 this reduces to the standard von
Weiszäcker [31] term

FvW ½n� ¼
ℏ2

me

Z j∇nðrÞj2
8nðrÞ dr: ð5Þ

The final term is a nonlocal density contribution to the free
energy [32]

Fa;b½n� ¼
ZZ

naðrÞwðjr − r0jÞnbðr0Þdr0dr: ð6Þ

with a and b free parameters, and chosen to be
a ¼ b ¼ 5=6.
This leaves still undetermined the kernels β and w. To

proceed, the functional is constrained to reproduce the
exact density-density response function (Lindhard), ~χ0, of
the noninteracting uniform electron gas as follows:

~χ−10 ðk; n0; TÞ ¼ −F̂
�
δ2FS½n; T�
δnðrÞδnðr0Þ

����
n0

�
: ð7Þ

Here F̂ denotes the Fourier transform of the second func-
tional derivative of Fs evaluated at the average density n0.
This results in the following relation for the w and β kernels
in reciprocal space:

~wðkÞ ¼ −~χ−10 ðkÞ þ ~χ−1TF þ ½1þ ~βðkÞ�~χ−1vWðkÞ
2abnðaþb−2Þ

0

≡ fðkÞ−~χ−10 ðkÞ þ ~χ−1TF þ ~χ−1vWðkÞ
2abnðaþb−2Þ

0

; ð8Þ

where ~χ−1TF and ~χ−1vWðkÞ are the contributions to Eq. (7) from
Eq. (3) and Eq. (5), respectively. For convenience we have
written ~w in terms of fðkÞ in the second line. We may now
choose fðkÞ with the only constraint that fðkÞ remains
finite. The satisfaction of Eq. (8) then determines ~w and ~β,
and guarantees the functional produces the exact response
and free energy in the uniform electron gas limit.
At zero temperature [16–20] and more recently at finite

temperature [32], the case f ≡ 1 (i.e., β≡ 0), has been
investigated. Though this case meets the requirement of
correcting the response, it produces a kernel ~w which goes
to the constant negative value in the large k limit
(k > 10kF) and thus results in the functional being
unbounded and producing unphysical densities with infi-
nitely negative energy [33]. We have added the nonlocality
β in Eq. (4) to alleviate this issue, while still enforcing the
exact response. In order to force ~wðkÞ to zero for large k
(k > 10kF), removing the aforementioned difficulty of the
f ≡ 1 case, we consider the interpolating fðkÞ ¼ e−k

2=α2k2F

with α ¼ 4.
We have applied the new functional to hydrogen and

aluminum over a wide range of density and temperatures.
In these calculations we use a local pseudopotential for all
orbital-free calculations as well as for some Kohn-Sham
calculations. Using the same pseudopotential provides an
apple to apple comparison of our Fs functional to the exact
Kohn-Sham method for Fs, since we also use the same
Fxc approximation in all cases. In addition, we perform
Kohn-Sham calculations with a more standard nonlocal
pseudopotential for comparison.
The details of the calculations are as follows. The local

pseudopotentials for hydrogen and aluminum are given in
Refs. [28] and [34], respectively. In the orbital-free calcu-
lations the numeric grid sizes were 643 or 963 depending on
system size and density. For the Kohn-Sham calculations
we used the QUANTUM-ESPRESSO code [35] and plane
wave cutoff energies of 2040 and 680 eV for hydrogen and
aluminum, respectively, and all calculations were done at
the Gamma point only. All calculations use the local
density approximation [36] for Fxc.
First we consider the computational cost. The time

required for the optimization of the electron density for
a given random arrangement of 128 hydrogen atoms at
density 2 g=cm3 at various temperatures is shown in Fig. 1,
as calculated on an eight-core 2.93 GHz Intel Xeon
machine. This corresponds to the time for a single
molecular dynamics time step. For the Kohn-Sham case,
the temperature scaling is clearly shown as a bottleneck to
higher temperature simulations as the time goes from under
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10 s at 1 eV to over 1200 s at 24 eV and over 4300 s at
32 eV. The required number of orbitals goes from 100 to
1600 to 2400, respectively, to achieve a threshold occu-
pation of 10−6. In contrast for the orbital-free methods there
is no scaling with temperature. Our functional took gen-
erally 4–6 s whereas the simpler Thomas-Fermi calcula-
tions took about 2 s. It is of note that though the nonlocal
terms of Eqs. (4) and (6) appear computationally expensive,
they may be evaluated efficiently in reciprocal space
through the use of fast Fourier transforms.
Next we consider an important microscopic feature, the

electron density, which by the primary tenet of DFT
determines the system completely. Other integrated quan-
tities, such as the total energy or pressure, which are often
alone considered in determining the accuracy of a func-
tional, are important results. However, if one achieves good
results in those integrated quantities and not in the density
itself, the integrated results are good due to some cancel-
lation of errors. So we begin with the electron density
examined through the ion-electron pair distribution func-
tion, gie. Recall that nðrÞ ¼ n0gieðrÞ is the average electron
density around an ion. In Fig. 2 the results of three orbital-
free functionals are plotted. These include the Thomas-
Fermi approximation, as well as the Perrot functional, and
our new functional given in this work. As explained before
the only difference between these orbital-free calculations
and the Kohn-Sham local pseudopotential (LPP) calcula-
tion is in Fs. The most remarkable feature is that the Kohn-
Sham (LPP) and our functional produce nearly identical gie
or electron densities. On the contrary, the simpler func-
tionals produce quite different densities. We also solve the
Kohn-Sham system with the more standard approach of a
nonlocal pseudopotential (NLPP). Comparing the Kohn-
Sham (NLPP) results we see good agreement for the
hydrogen case over the whole range and good agreement
for aluminum outside the pseudopotential cutoff radius,
around r=rws ¼ 0.6.

Next we consider two cases of fixed ions. First, we
consider hydrogen as a simple-cubic lattice at 2 g=cc
and temperatures from 1 to 1000 eV. In the top panel of
Fig. 3 the pressure is plotted up to 10 eV for the functionals
and pseudopotentials as previously described. Here at
fixed density the increase in pressure with temperature is
completely due to the thermal excitation of the electrons.
The maximum difference between the Kohn-Sham
(NLPP) results and our functional is less than 0.5%,
whereas the maximum difference for the Thomas-Fermi
and Perrot functionals are 24% and 14%, respectively.
Above 40 eV the differences between the functionals is
negligible. In the lower panel we consider face-center-cubic
aluminum at 100 K ¼ 0.008 617 eV near equilibrium den-
sity. Here again there is excellent agreement for the present
functional and Kohn-Sham methods. The simple Thomas-
Fermi functional does not exhibit any binding, as indicated
by the pressure becoming negative, and while the Perrot
correction does it is significantly different from the results
of Kohn-Sham and our functional.
Now we consider molecular dynamics simulations for

warm dense deuterium and aluminum. Note, deuterium is
examined to connect with the PIMC data, and involves the
same pseudopotentials as for hydrogen. Equation of state
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FIG. 1 (color online). Time for a single electron density
optimization for 128 hydrogen atoms in a given random arrange-
ment at 2 g=cm3. The Kohn-Sham temperature scaling is clearly
shown as a prohibitive factor in extending across temperature
regimes, while our functional shows no such issue.
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FIG. 2 (color online). Top: The ion-electron pair correlation
function gieðrÞ is plotted for a random distribution of hydrogen
atoms at density 2 g=cc and temperature of 5 eV. Bottom:
The same but for aluminum at 2.8 g=cc and temperature
100 K ¼ 0.008 617 eV. rws is the ion Wigner-Seitz radius. Both
systems show excellent agreement for the electron densities
between our functional and Kohn-Sham, where the same pseu-
dopotential is used.
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results are plotted for deuterium at 4.048 19 g=cc and
temperatures from 1 to 100 eV in Fig. 4. In addition,
Kohn-Sham results are plotted up to 15.7 eV and path
integral Monte Carlo [7] results down to 5.4 eV. While the
Kohn-Sham method becomes computationally prohibitive
with increasing temperature, the PIMC does so with
decreasing temperature. The present orbital-free calcula-
tions, however, span the entire temperature range and are
significantly less expensive than the other methods at any
temperature while showing good agreement with both the
Kohn-Sham and PIMC calculations in their respective
regions of applicability. Specifically our functional results
never deviate by more than 2% from either the Kohn-Sham
or PIMC results. Similar results have been obtained at 1.0
and 10.0 g=cc as well (not shown). We note also that for
dilute systems, such as deuterium below 0.5 g=cc, accuracy
does diminish. For both the orbital-free and Kohn-Sham
calculations 128 atoms were simulated for 10 000 and 5000
time steps, respectively. The times steps varied with
temperature from 0.5 fs at 1 eV to 0.0125 fs at 100 eV.
At 15.7 eV the Kohn-Sham calculation took 161.5 s per
time step on 48 compute cores, while the orbital-free
calculation took 1.76 s per time step on 32 compute cores
on the same machine.
For the case of aluminum we have calculated the ion-ion

pair distribution function gii for two cases. The first is near
melting at the experimental density and the temperature of

2.349 g=cc and 1023 K ¼ 0.088 15 eV. The second is the
warm dense case of 2.7 g=cc and 5 eV. Figure 5 shows gii for
both cases. Our functional and the Kohn-Sham results are in
very good agreement in both cases and the experimental data
[37] are also in agreement at the lower temperature. Here, gii
was averaged over 15 000 and 6000 time steps for 108
and 64 atoms after equilibration in the orbital-free andKohn-
Sham calculations, respectively.
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FIG. 3 (color online). Pressure results for simple-cubic hydro-
gen at 2 g=cc (top) and for fcc aluminum at 100 K ¼
0.008 617 eV (bottom). Both results show our functional closely
reproducing Kohn-Sham results.
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FIG. 4 (color online). Pressure results for deuterium at
4.048 19 g=cc. Our functional is in good agreement with
Kohn-Sham and PIMC calculations and spans the entire temper-
ature range. The bottom panel shows the relative pressure with
Kohn-Sham and PIMC calculations in their respective ranges.
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FIG. 5 (color online). Pair distribution function giiðrÞ for Al at
experimental density 2.349 g=cc and temperature 1023 K ¼
0.088 15 eV (lower curves) and warm dense conditions
2.7 g=cc and 5 eV (upper curves, shifted by 2). Excellent
agreement is shown between the Kohn-Sham and our functional.
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In summary, the present orbital-free functional shows
excellent agreement with the Kohn-Sham results while
being computationally less expensive and having appli-
cability to regions of higher temperature than are accessible
by Kohn-Sham methods, as well as very good agreement
with PIMC calculations at high temperatures while reach-
ing lower temperatures than those accessible by PIMC
calculations. The strong agreement in the gieðrÞ, as com-
pared with the Kohn-Sham method, shows also that the
current results are truly reproducing orbital-based results
and as such demonstrate a realization of a highly accurate
pure density functional theory. In future work we will
consider more complex systems with higher atomic number
elements as well as mixtures and lower density systems
such as expanded metals.
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