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Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is
highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature
drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives
rise to the formation of hard power-law spectra in parameter regimes where the energy density in the
reconnecting field exceeds the rest mass energy density σ ≡ B2=ð4πnmec2Þ > 1 and when the system size
is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p ¼ 1 and most of the available
energy is converted into nonthermal particles. A simple analytic model is proposed which explains these
key features and predicts a general condition under which hard power-law spectra will be generated from
magnetic reconnection.
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Introduction.—Magnetic reconnection is a fundamental
plasma process that allows rapid changes of magnetic field
topology and the conversion of magnetic energy into
plasma kinetic energy. It has been discussed extensively
in solar flares, Earth’s magnetosphere, and laboratory
applications. However, magnetic reconnection remains
poorly understood in high-energy astrophysical systems
[1]. Magnetic reconnection has been suggested as a
mechanism for producing high-energy emissions from
pulsar wind nebula, gamma-ray bursts, and jets from active
galactic nuclei [2–6]. In those systems, it is often expected
that the magnetization parameter σ ≡ B2=ð4πnmc2Þ
exceeds unity. Most previous kinetic studies focused on the
nonrelativistic regime σ < 1 and reported several acceler-
ation mechanisms, such as acceleration at X-line regions
[7–9] and Fermi-type acceleration within magnetic islands
[8–11]. More recently, the regime σ ¼ 1–100 has been
explored using pressure-balanced current sheets, and strong
particle acceleration has been found in both diffusion
regions [12–15] and island regions [16,17]. However, this
initial condition requires a hot plasma component inside the
current sheet to maintain force balance, which may not be
justified for high-σ plasmas.
For magnetically dominated systems, it has been shown

[18,19] that the gradual evolution of the magnetic field can
lead to formation of intense nearly force-free current layers
where magnetic reconnection may be triggered. In this
Letter, we perform large-scale two-dimensional (2D) and
three-dimensional (3D) full particle-in-cell (PIC) simula-
tions of a relativistic force-free current sheet with σ up to
1600. In the high-σ regime, the release of magnetic energy
is accompanied by the energization of nonthermal particles
on the same fast time scale as the reconnection process.
Much of the magnetic energy is converted into the kinetic
energy of nonthermal relativistic particles and the eventual

energy spectra show a power law fðγÞ ∝ γ−p over nearly
two decades, with the spectral index p decreasing with σ
and system size and approaching p ¼ 1. The dominant
acceleration mechanism is a first-order Fermi process
through the curvature drift motion of particles along the
electric field induced by relativistic reconnection outflows.
The formation of the power-law distribution can be
described by a simple model that includes both inflow
and the Fermi acceleration. This model also appears to
explain recent PIC simulations [15], which reported hard
power-law distributions after subtracting the initial hot
plasma population inside the current layer.
Numerical simulations.—The initial condition is a force-

free current layer with B ¼ B0tanhðz=λÞx̂þ B0sechðz=λÞŷ,
which corresponds to a magnetic field with magnitude B0

rotating by 180° across the layer with a thickness of 2λ. The
plasma consists of electron-positron pairs with mass ratio
mi=me ¼ 1. The initial distributions are Maxwellian, with a
uniform density n0 and temperature (Ti ¼ Te ¼ 0.36mec2).
Particles in the sheet have a net drift Ui ¼ −Ue to give a
current density J ¼ en0ðUi − UeÞ consistent with ∇ × B ¼
4πJ=c. The simulations are performed using the VPIC [20]
and NPIC codes [21,22], both of which solve the relativistic
Vlasov-Maxwell system of equations.
In the simulations, σ is adjusted by changing the ratio of

the electron gyrofrequency to plasma frequency σ ¼ B2=
ð4πnemec2Þ ¼ ðΩce=ωpeÞ2. A series of 2D simulations
were performed with σ ¼ 1 → 1600 and domain sizes
Lx × Lz ¼ 300di × 194di, 600di × 388di, and 1200di ×
776di, where di ¼ c=ωpe is the inertial length. For 3D
simulations, the largest case is Lx × Ly × Lz ¼
300di × 300di × 194di, with σ ¼ 100. For high-σ cases,
we choose grid sizes Δx ¼ Δy ¼ 1.46=

ffiffiffi
σ

p
di and Δz ¼

0.95=
ffiffiffi
σ

p
di so that the gyroradius ∼vthedi=ð

ffiffiffi
σ

p
cÞ is

resolved. The half thickness is λ ¼ 6di for σ ≤ 100, 12di
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for σ ¼ 400, and 24di for σ ¼ 1600 in order to satisfy
Ui < c. All simulations used more than 100 particles per
cell for each species, employed periodic boundary con-
ditions in the x and y directions, and in the z direction used
conducting boundaries for the fields and reflecting for
the particles. A long-wavelength perturbation [22] with
Bz ¼ 0.03B0 is included to initiate reconnection.
Simulation results.—Figure 1 contrasts some key results

from 2D and 3D simulations with σ ¼ 100 and domain size
Lx × Lz ¼ 300di × 194di. (Ly ¼ 300di for the 3D simu-
lation.) Panel (a) shows the current density at ωpet ¼ 375
in the 2D simulation. Because of the secondary tearing
instability, several fast-moving secondary plasmoids
develop along the central region and merge to form larger
plasmoids [22]. Panel (b) shows an isosurface of current
density colored by J · E at ωpet ¼ 375 from the 3D
simulation. As the initial guide field is expelled outward
from the central region, the kink instability [23] develops
and interacts with the tearing mode, leading to a turbulent
evolution [24]. Previous studies have suggested different
predictions concerning the influence of σ on the reconnec-
tion rate [25–29]. In this Letter, the reconnection rate is
observed to increase with σ from Erec ∼ 0.03B0 for σ ¼ 1 to
Erec ∼ 0.22B0 for σ ¼ 1600. Although the 2D and 3D
simulations appear quite different, the energy conversion
and particle energization are surprisingly similar. Panel
(c) compares the evolution of magnetic energy EB, plasma
kinetic energy Ek, and energy in relativistic particles with
γ > 4. In both cases, about 20% of the magnetic energy
is converted into kinetic energy of relativistic particles.
Figure 1(d) compares the energy spectra at various times.
The most striking feature is that a hard power-law spectrum
with index p ∼ 1.35 forms in both 2D and 3D runs. In the
inset, the energy spectrum for all particles in the 3D
simulation at ωpet ¼ 700 is shown by the red line. The
low-energy portion can be fitted by a Maxwellian distri-
bution (black line) and the nonthermal part resembles a
power-law distribution (blue line) starting at γ ∼ 2, with an
exponential cutoff apparent for γ ≳ 100. The nonthermal
part contains ∼25% of particles and ∼95% of the kinetic
energy. The maximum particle energy is predicted approx-
imately using the reconnecting electric field mec2γmax ¼R jqErecjcdt until the gyroradius is comparable to the
system size. Although we observe a strong kink instability
in the 3D simulations, the energy conversion and particle
energy spectra are remarkably similar to the 2D results,
indicating the 3D effects are not crucial for understanding
the particle acceleration. Since there is more freedom to
vary the parameters in 2D simulations, in the rest of this
Letter we focus on this limit.
In Fig. 2, we present more analysis for the acceleration

mechanism using the case with σ ¼ 100 and Lx × Lz ¼
600di × 388di. Panel (a) shows the energy as a function of
the x position of four accelerated particles. The electrons
gain energy by bouncing back and forth within the
reconnection layer. Upon each cycle, the energy gain is

Δγ ∼ γ, which demonstrates that the acceleration mecha-
nism is a first-order Fermi process [11,30]. To show this
more rigorously, we have tracked the energy change of all
the particles in the simulation and contributions from the
parallel electric field (mec2Δγ ¼

R
qv∥E∥dt) and curvature

drift acceleration (mec2Δγ ¼
R
qvcurv ·E⊥dt) similar to

[31], where vcurv ¼ γv2∥ðb × ðb ·∇ÞbÞ=Ωce, v∥ is the par-
ticle velocity parallel to the magnetic field, and b ¼ B=jBj.
Panel (b) shows the averaged energy gain and the

(a)

(b)

(c)

(d)

FIG. 1 (color online). Results from 2D and 3D PIC simulations
with σ ¼ 100. (a) Current density from 2D simulation at
ωpet ¼ 375. (b) x-z cut of current density and an isosurface of
current density with color-coded J ·E normalized using
n0mec2ωpe at ωpet ¼ 375. (c) Evolution of magnetic energy
EB, total kinetic energy Ek, and kinetic energy carried by
relativistic particles with γ > 4. (d) Evolution of particle energy
spectra from 2D and 3D simulations. (Inset) Energy spectrum
from the 3D simulation at ωpet ¼ 700.
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contribution from parallel electric field and curvature drift
acceleration over an interval of 25ω−1

pe as a function of
energy starting at ωpet ¼ 350. The energy gain follows
Δγ ∼ αγ, confirming the first-order Fermi process identi-
fied from particle trajectories. The energy gain from the
parallel motion is weakly dependent on energy, whereas the
energy gain from the curvature drift acceleration is roughly
proportional to energy. In the early phase, the parallel
electric field is strong but accelerates only a small portion
of particles, and the curvature drift dominates the accel-
eration starting at about ωpet ¼ 250. The contribution from
the gradient drift was also evaluated and found to be
unimportant. Panel (c) shows α ¼ hΔγi=ðγΔtÞ measured
directly from the energy gain of the particles in the
perpendicular electric field (mec2Δγ ¼

R
qv⊥ · E⊥dt)

and estimated from the expression for the curvature drift
acceleration. The close agreement demonstrates that cur-
vature drift term dominates the particle energization. For
higher σ and larger domains, the acceleration is stronger
and reconnection is sustained over a longer duration.
In panel (d), a summary for the observed spectral index
of all of the 2D runs shows that the spectrum is harder for
higher σ and larger domain sizes, and it approaches the
limit p ¼ 1.
New Model.—It is often argued that some loss mecha-

nism is needed to form a power-law distribution [12,30].
However, the simulation results reported here illustrate
clear power-law distributions in a closed system. Here we
demonstrate that these results can be understood in terms of
a model illustrated in Fig. 3(a). As reconnection proceeds,
the ambient plasma is injected into the acceleration region
at a speed V in ¼ cErec ×B=B2. We consider the continuity

equation for the energy distribution function fðε; tÞ within
the acceleration region

∂f
∂t þ

∂
∂ε

�∂ε
∂t f

�
¼ finj

τinj
−

f
τesc

; ð1Þ

with ∂ε=∂t ¼ αε, where α is the constant acceleration rate
from the first-order Fermi process, ε ¼ mec2ðγ − 1Þ=T is
the normalized kinetic energy, τinj is the time scale for
injection of particles from the upstream region with fixed
distribution finj and τesc is escape time. We assume that the
initial distribution within the layer f0 and the upstream
injected distribution are both Maxwellian with initial
temperature T < mec2, such that

finj ∝ γðγ2 − 1Þ1=2 expð−εÞ

≈
ffiffiffiffiffi
2ε

p �
1þ 5T

4mec2
εþ � � �

�
expð−εÞ: ð2Þ

For simplicity, we consider the lowest order (nonrelativ-
istic) term in this expansion and normalize f0 ¼
ð2N0=

ffiffiffi
π

p Þ ffiffiffi
ε

p
expð−εÞ by the number of particles N0

within the initial layer and finj by the number of particles
injected into the layer Ninj ∝ V inτinj during reconnection.
With these assumptions, the solution to (1) can be written as

fðε;tÞ¼2N0ffiffiffi
π

p ffiffiffi
ε

p
e−ð3=2þβÞαtexpð−εe−αtÞ

þ 2Ninjffiffiffi
π

p ðατinjÞε1þβ ½Γð3=2þβÞðεe−αtÞ−Γð3=2þβÞðεÞ�; ð3Þ

(a) (b)

(c) (d)

FIG. 2 (color online). (a) Energy as a function of x position of four accelerated particles. (b) Averaged energy gain and contributions
from parallel electric fields and curvature drift acceleration over an interval of 25ω−1

pe as a function of particle energy starting at
ωpet ¼ 350. (c) α ¼ hΔγi=ðγΔtÞ from energy gain in perpendicular electric field and by curvature drift acceleration, and from Eq. (6)
using the averaged flow speed and island size. (d) Spectral index of all 2D simulations.
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where β ¼ 1=ðατescÞ and ΓsðxÞ is the incomplete gamma
function. The first term accounts for particles initially in the
acceleration region, while the second term describes the
evolution of injected particles. In the limit of no injection or
escape (τesc → ∞ and τinj → ∞), the first term in (3)
remains a thermal distribution with enhanced temperature
eαtT, consistent with Ref. [30]. However, as reconnection
proceeds, new particles enter continuously into the accel-
eration region and, because of the periodic boundary
conditions, there is no particle escape. Thus, considering
the case τesc → ∞ and assuming N0 ≪ Ninj, at the time
t ¼ τinj when reconnection saturates, the second term in (3)
simplifies to

fðε; τinjÞ ¼
Ninj

ατinj

�
erfðε1=2Þ − erfðε1=2e−ατinj=2Þ

ε

þ 2ffiffiffi
π

p e−ατinj=2 expð−εe−ατinjÞ − e−ε

ε1=2

�
: ð4Þ

When ατinj > 1, this gives the relation f ∝ 1=ε in the
energy range 1 < ε < eατinj , as shown in Fig. 3(b), by

directly evaluating (4) for different ατinj. Interestingly, this
energy range for the power law is below that of the heated
thermal particles in the initial layer. Thus, in the limit
N0 ∼ Ninj the first term in (3) should be retained and the
power law produced is subthermal relative to this popula-
tion. While it is straightforward to obtain the relativistic
corrections arising from the injected distribution (2), we
emphasize that these terms do not alter the spectral index.
In order to estimate the acceleration rate α, the energy

change of each particle can be approximated by a relativ-
istic collision formula (e.g., [32])

Δγ ¼
�
Γ2
V

�
1þ 2Vvx

c2
þ V2

c2

�
− 1

�
γ; ð5Þ

where V is the outflow speed, Γ2
V ¼ 1=ð1 − V2=c2Þ, and vx

is the particle velocity in the x direction. The time between
two collisions is about Lis=vx, where Lis is the typical size
of the magnetic islands (or flux ropes in 3D). Assuming
relativistic particles have a nearly isotropic distribution
vx ∼ c=2

α ∼
cðΓ2

Vð1þ V
c þ V2

c2 Þ − 1Þ
2Lis

: ð6Þ

Using this expression, we measure the averaged V and Lis
from the simulations and estimate the time-dependent accel-
eration rate αðtÞ. An example is shown in Fig. 2(c). This
agrees reasonably well with that obtained from perpendicular
acceleration and curvature drift acceleration. Figure 3(c)
shows the time-integrated value of ατinj ¼

R τinj
0 αðtÞdt for

various simulations with σ ¼ 6–400. For cases with
ατinj > 1, a hard power-law distribution with spectral index
p ∼ 1 forms. For higher σ and larger system size, the
magnitude of ατinj increases approximately as ∝ σ1=2.
Discussion.—Considering the more realistic limit with

both particle loss and injection, Eq. (3) predicts a spectral
index p ¼ 1þ 1=ðατescÞ when ατinj > 1, recovering the
classical Fermi solution (e.g., [32]). If the escape is caused
by convection out of the acceleration region τesc ¼ Lx=V,
the spectral index should approach p ¼ 1 when ατesc ≫ 1
in the high-σ regime. Although the present simulations
employed periodic boundary conditions, most cases
develop power-law distributions within two light-crossing
times, indicating that the boundary conditions do not
strongly influence the results. In preliminary 2D simula-
tions using open boundary conditions [21], we have
confirmed these general trends (Guo et al., 2014, in
preparation). For nonrelativistic reconnection, the acceler-
ation rate is lower and thus it takes longer to form a power-
law distribution. Take the nonrelativistic limit for (6): if
V ¼ 0.1c, vx ¼ 0.2c, and Lis ¼ 100di, the reconnection
has to be sustained over a time τinj > 2 × 104ω−1

pi to form a
power law, which significantly exceeds the simulation
time of most previous studies. It has been suggested that

(a)

(b)

(c)

FIG. 3 (color online). (a) Illustration of the acceleration model
for the formation of power-law distributions. (b) Analytical
results for different ατinj obtained from (4). (c) Time integrated
ατinj for cases with σ ¼ 6–400 and different system sizes.
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current sheet instabilities may strongly influence particle
acceleration [13]. In contrast, the energy distributions
reported here are remarkably similar in 2D and 3D, despite
the broad range of secondary kink and tearing instabilities
in 3D. This surprising result suggests that the underlying
Fermi acceleration is rather robust and does not depend on
the existence of well-defined magnetic islands. The strong
similarities between the 2D and 3D acceleration spectra are
also consistent with some key similarities in the reconnec-
tion dynamics. In particular, the range of scales for the 2D
magnetic islands is similar to the observed 3D flux ropes.
In addition, the reconnection rate and the flow speeds are
also quite similar between 2D and 3D, in agreement with
other recent studies [33,34]. In large open systems, it
remains to be seen whether 3D turbulence may affect the
particle escape times. Another important factor that may
influence these results is the presence of an external guide
field Bg. Our preliminary simulations suggest that the key
results of this letter will hold for Bg < B0. For stronger
guide fields, the energy release is slower and the associated
particle acceleration requires further study.
We have demonstrated that in the regime σ ≳ 1, mag-

netic reconnection is an efficient mechanism of converting
the energy stored in the magnetic shear into relativistic
nonthermal particles. These energetic particles contain a
significant fraction of the total energy released and, quite
interestingly, have a power-law energy distribution with
spectral index p ∼ 1 when ατinj > 1. Physically, this
requires that the time scale over which particles are injected
into the acceleration region is longer than the acceleration
time for the first-order Fermi process. The results in this
Letter demonstrate this condition is more easily achieved
in regimes with σ ≫ 1, but it may also occur with σ ≳ 1
in sufficiently large reconnection layers. Our new findings
substantiate the importance of fast magnetic reconnection
in strongly magnetized plasmas and may be important in
explaining the high-energy emissions in systems like
pulsars, jets from black holes, and gamma-ray bursts.
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