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We propose a system for observing the correlated phase dynamics of two mesoscopic ensembles of
atoms through their collective coupling to an optical cavity. We find a dynamical quantum phase transition
induced by pump noise and cavity output coupling. The spectral properties of the superradiant light emitted
from the cavity show that at a critical pump rate the system undergoes a transition from the behavior of two
independent oscillators to the phase locking that is the signature of quantum synchronization.
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Synchronization is an emergent phenomenon that
describes coupled objects spontaneously phase locking to
a common frequency in spite of differences in their natural
frequencies [1]. It was famously observed by Huygens, the
17th century clock maker, in the antiphase synchronization
of two maritime pendulum clocks [2]. Dynamical synchro-
nization is now recognized as ubiquitous behavior occur-
ring in a broad range of physical, chemical, biological, and
mechanical engineering systems [1,3,4].
Theoretical treatments of this phenomenon are often

based on the study of phase models [5,6], and as such have
been applied to an abundant variety of classical systems,
including the collective blinking of fireflies, the beating of
heart cells, and audience clapping. The concept can be
readily extended to systems with an intrinsic quantum
mechanical origin such as nanomechanical resonators [7,8],
optomechanical arrays [9], Josephson junctions [10,11],
and collective atomic recoil lasing [12,13]. When the
number of coupled oscillators is large, it has been dem-
onstrated that the onset of classical synchronization is
analogous to a thermodynamic phase transition [14] and
exhibits similar scaling behavior [15].
Recently, there has been increasing interest in exploring

manifestations in the quantum realm [16–23]. Connections
between quantum entanglement and synchronization have
been revealed in different systems [16–19]. Based on the
Heisenberg uncertainty principle, quantum synchronization
measures have been applied to coupled optomechanical
devices [17]. The effect of quantum noise has been
shown to reduce the synchronization region of a driven
self-sustained oscillator [22]. Since the phenomenon is
inherently nonequilibrium, all of these systems share the
common property of competition between coherent and
incoherent driving and dissipative forces.
In this Letter, we propose a modern-day realization of the

original Huygens experiment [2]. We consider the syn-
chronization of two active atomic clocks coupled to a
common single-mode optical cavity. It has been predicted
that in the regime of steady-state superradiance [24–27] a

neutral atom lattice clock could produce an ultracoherent
optical field with a quality factor (ratio of frequency to
linewidth) that approaches 1018. We show that two such
clocks may exhibit a dynamical phase transition [28–31]
from two disparate oscillators to quantum phase-locked
dynamics. The onset of synchronization at a critical pump
strength is signified by an abruptly increased relative phase
diffusion that diverges in the thermodynamic limit. Besides
being of fundamental importance in nonequilibrium quan-
tum many-body physics, this work could have broad
implications for many practical applications of ultrastable
lasers and precision measurements [24].
The general setup is shown schematically in Fig. 1. Two

ensembles, each containing N two-level atoms with excited
state jei and ground state jgi, are collectively coupled to a
high-quality optical cavity. The transition frequencies of the
atoms in ensembles A and B are detuned from the cavity
resonance by δ=2 and −δ=2, respectively. This could
be achieved by spatially separating the ensembles and
applying an inhomogeneous magnetic field to induce a
differential Zeeman shift. The atoms in both ensembles are
pumped incoherently to the excited state, as could be
realized by driving a transition to a third state that rapidly
decays to jei [26,27].
This system is described by the Hamiltonian in the

rotating frame of the cavity field:

FIG. 1 (color online). Two ensembles of driven two-level atoms
coupled to a single-mode cavity field. The atoms in ensemble
A are detuned above the cavity resonance (dashed line). Ensemble
B contains atoms detuned below the cavity resonance by an
equivalent amount.
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Ĥ ¼ ℏδ
2
ðĴzA − ĴzBÞ þ

ℏΩ
2

ðâ†Ĵ−A þ ĴþA âþ â†Ĵ−B þ ĴþB âÞ;
ð1Þ

where Ω is the atom-cavity coupling and â and â†

are annihilation and creation operators for cavity photons.
Here ĴzA;B ¼ 1

2

P
N
j¼1 σ̂

z
ðA;BÞj and Ĵ−A;B ¼ P

N
j¼1 σ̂

−
ðA;BÞj are

the collective atomic spin operators, written in terms of
the Pauli operators for the two-level system σ̂zðA;BÞj
and σ̂−ðA;BÞj ¼ ðσ̂þðA;BÞjÞ†.
In addition to the coherent atom-cavity coupling, inco-

herent processes are critical and include the cavity intensity
decay at rate κ, the pump rate w, the free-space spontaneous
emission rate γs, and a background dephasing of the jei–jgi
transition at rate T−1

2 . The total system is then described
using a master equation for the reduced density operator ρ:

dρ
dt

¼ 1

iℏ
½Ĥ; ρ� þ κL½â�ρþ

X
T ¼A;B

XN
j¼1

�
γsL½σ̂−T j�

þ wL½σ̂þT j� þ
1

2T2

L½σ̂zT j�
�
ρ; ð2Þ

where L½Ô�ρ ¼ ð2ÔρÔ† − Ô†Ôρ − ρÔ†ÔÞ=2 denotes the
Lindblad superoperator.
The regime of steady-state superradiance is defined by

the cavity decay being much faster than all other incoherent
processes [24–27]. In this regime, the cavity can be
adiabatically eliminated [25], resulting in a field that is
slaved to the collective atomic dipole of the two ensembles
of atoms:

â≃ −
iΩ

κ þ iδ
Ĵ−A −

iΩ
κ − iδ

Ĵ−B: ð3Þ

For small detuning on the scale of the cavity linewidth,
δ ≪ κ, Eq. (3) reduces to â≃ −iΩĴ−=κ, where Ĵ− ¼ Ĵ−A þ
Ĵ−B is the total collective spin-lowering operator. In this
limit, the net effect of the cavity is to provide a collective
decay channel for the atoms, with rate γc ¼ Ω2=κ. This
collective decay should be dominant over other atomic
decay processes [25], i.e., Nγc ≫ γs; T−1

2 , so that the time
evolution is effectively given by a superradiance master
equation containing only atoms:

dρ
dt

¼ δ

2iℏ
½JzA − JzB; ρ� þ γcL½Ĵ−�ρ

þ w
XN
j¼1

ðL½σ̂þAj� þ L½σ̂þBj�Þρ: ð4Þ

With this system we naturally provide the three neces-
sary ingredients for quantum synchronization: a control-
lable difference between the oscillation frequencies of two
mesoscopic ensembles, a dissipative coupling generated by

the emission of photons into the same cavity mode, and a
driving force produced by optical pumping.
The photons emitted by the cavity provide directly

measurable observables. Synchronization is evident in
the properties of the photon spectra. In the case of two
independent ensembles in the unsynchronized phase, each
ensemble radiates photons at its own distinct transition
frequency. This leads to two Lorentzian peaks that are
typically well separated. In the synchronized phase, all of
the atoms radiate at a common central frequency, resulting
in a single peak.
To solve this problem and find the steady state, we use a

semiclassical approximation that is applicable to large atom
numbers. Cumulants for the expectation values of system
operators fσ̂zðA;BÞj; σ̂�ðA;BÞjg are expanded to second order

[24,25]. All expectation values are symmetric with respect
to exchange of atoms within each ensemble; i.e.,
hσ̂þBiσ̂−Bji ¼ hσ̂þB1σ̂−B2i, for all i ≠ j. Because of the U(1)
symmetry, hσ̂�ðA;BÞji ¼ 0. Therefore, all nonzero observ-

ables can be expressed in terms of hσ̂zðA;BÞji, hσ̂þðA;BÞiσ̂−ðA;BÞji,
and hσ̂zðA;BÞiσ̂zðA;BÞji. Expectation values involving only

one ensemble are the same for both ensembles, and for
these cases we omit the superfluous A,B subscripts. The
equations of motion can then be found from Eq. (4),

d
dt

hσ̂z1i ¼ −γcðhσ̂z1i þ 1Þ − wðhσ̂z1i − 1Þ
− 2γcðN − 1Þhσ̂þ1 σ̂−2 i − γcNðhσ̂þA1σ̂−B1i þ c:c:Þ;

ð5Þ

d
dt

hσ̂þ1 σ̂−2 i ¼ −ðwþ γcÞhσ̂þ1 σ̂−2 i þ
γc
2
ðhσ̂z1σ̂z2i þ hσ̂z1iÞ

þ γcðN − 2Þhσ̂z1ihσ̂þ1 σ̂−2 i
þ γc

2
Nhσ̂z1iðhσ̂þA1σ̂−B1i þ c:c:Þ; ð6Þ

d
dt

hσ̂þA1σ̂−B1i ¼ −ðwþ γc − iδÞhσ̂þA1σ̂−B1i

þ γc
2
ðhσ̂zA1σ̂zB1i þ hσ̂z1iÞ

þ γcðN − 1Þhσ̂z1iðhσ̂þA1σ̂−B1i þ hσ̂þ1 σ̂−2 iÞ;
ð7Þ

describing population inversion, spin-spin coherence
within each ensemble, and correlation between ensem-
bles, respectively. In deriving Eqs. (6) and (7), we have
dropped third-order cumulants [32]. We also factorize
hσ̂zðA;BÞiσ̂zðA;BÞji ≈ hσ̂z1i2, which we find to be valid outside

the regime of very weak pumping (w < T−1
2 ; γs; γc), where

a nonfactorizable subradiant dark state plays an important
role [25]. After making these approximations, Eqs. (5)–(7)
form a closed set of equations. The steady state is found by
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setting the time derivatives to zero, and the resulting
algebraic equations can be solved exactly. These solutions
are the basis for Figs. 2–4 below.
In order to calculate the photon spectrum, we employ the

quantum regression theorem [35] to obtain the two-time
correlation function of the light field, hâ†ðτÞâð0Þi, where
time 0 denotes an arbitrary time origin in steady state. In the
limit δ ≪ κ, according to Eq. (3), the phase diffusion of
the atoms and light are the same; i.e., hâ†ðτÞâð0Þi∼
hĴþðτÞĴ−ð0Þi. We begin by deriving equations of motion
for hσ̂þA1ðτÞσ̂−B1ð0Þi and hσ̂þB1ðτÞσ̂−B2ð0Þi:
d
dτ

� hσ̂þA1ðτÞσ̂−B1ð0Þi
hσ̂þB1ðτÞσ̂−B2ð0Þi

�
¼ 1

2

�
X Y
Y X�

�� hσ̂þA1ðτÞσ̂−B1ð0Þi
hσ̂þB1ðτÞσ̂−B2ð0Þi

�
;

ð8Þ

where X¼ γcðN−1Þhσ̂z1ð0Þi−γc−wþ iδ;Y¼ γcNhσ̂z1ð0Þi.
We have systematically factorized

hσ̂z1ðτÞσ̂þA1ðτÞσ̂−B1ð0Þi ≈ hσ̂z1ð0Þihσ̂þA1ðτÞσ̂−B1ð0Þi;
hσ̂z1ðτÞσ̂þB1ðτÞσ̂−B2ð0Þi ≈ hσ̂z1ð0Þihσ̂þB1ðτÞσ̂−B2ð0Þi: ð9Þ

Similarly, one finds that hσ̂þA1ðτÞσ̂−A2ð0Þi and hσ̂þB1ðτÞσ̂−A1ð0Þi
satisfy the same equation of motion as Eq. (8). The solution
of this coupled set is straightforward and shows that
both hσ̂þA1ðτÞσ̂−B1ð0Þi and thus also hâ†ðτÞâð0Þi evolve in
proportion to the exponential,

exp

�
−
1

2
½wþ γc − ðN − 1Þγchσ̂z1i−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNγchσ̂z1iÞ2 − δ2

q
�τ
�
;

ð10Þ

which we parametrize by exp ½−ðΓþ iΔÞτ=2�, where Γ
represents the decay of the first-order correlation and Δ
the modulation frequency. Laplace transformation yields
the photon spectrum, which consists of Lorentzians of
half-width Γ=2 centered at frequencies �Δ=2.
The importance of the two-time correlation function is

that it provides direct access to the correlated phase
dynamics of the two ensembles. The parameter Δ physi-
cally represents the precession frequency of the phase of the
collective mesoscopic dipoles with respect to one another.
In Fig. 2, we show Δ as a function of δ at w ¼ Nγc=2 for
several values of N. For large detuning, Δ approaches δ,
indicating that the dipoles precess independently at their
uncoupled frequency. Below a critical δ, we find Δ to be
zero, indicating synchronization and phase locking.
The fact that this system undergoes a synchronization

transition that is fundamentally quantum mechanical is
evident by the important effect of quantum fluctuations
associated with the repumping process and the cavity
decay. It is shown that quantum noise induces phase
diffusion of the collective atomic dipoles [36], resulting
in an intrinsic linewidth for each ensemble separately that is

given by γc [27]. However, quantum fluctuations also
lead to phase diffusion between the two ensembles, as
quantified by the linewidth Γ of the Lorentzian peak(s).
Therefore, Γ=γc is a dimensionless measure of the degree of
the synchronization between the two ensembles.
This system has three independent control variables, the

detuning δ, the dissipative coupling Nγc, and the pumping
w, so we show Γ=γc on the w-δ parameter plane in Fig. 3(a)

0 0.5 1 1.5
0

0.5

1

1.5

N c

N
c

FIG. 2 (color online). Steady-state relative phase precession for
two ensembles as a function of detuning at w ¼ Nγc=2 for N ¼
100 (blue dashed line), N ¼ 500 (purple dot-dashed line), and
N ¼ 106 (red solid line). The straight dotted line is δ ¼ Δ.

FIG. 3 (color online). (a) Nonequilibrium phase diagram of the
quantum synchronization represented by Γ (in units of γc) on the
w-δ parameter plane, where the dissipative coupling Nγc
(N ¼ 104) is fixed. An abrupt peak is observed at the boundary
between the synchronized and unsynchronized phases. (b) As for
(a) but on the w-Nγc parameter plane.
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and on the w-Nγc parameter plane in Fig. 3(b). In the region
of no quantum correlation, the quantum noise due to
pumping destroys the coherences between spins faster
than the collective coupling induced by the cavity field
can reestablish them. Therefore, the mesoscopic dipole is
destroyed and the observed spectra are broad. In both the
synchronized and unsynchronized regions, spins within
each ensemble are well correlated so that the corresponding
Lorentzian peaks have ultranarrow linewidth (∼γc). As is
apparent in Fig. 3(a), the two ensembles cannot be
synchronized when Nγc < δ, since then the coherent
coupling is not sufficient to overcome the relative pre-
cession that arises from the detuning.
For strong coupling, Nγc > δ, the synchronization tran-

sition occurs as the pump rate passes a critical value. The
two phases on either side of the critical region are abruptly
separated. As one approaches the synchronized phase from
the unsynchronized one by variation of either δ or w, the
linewidth increases rapidly, showing amplification of the
effect of quantum noise in the vicinity of the critical point.
After passage of the critical region, the linewidth drops
rapidly, leading to rigid phase locking between the two
collective dipoles.
We emphasize that the synchronization dynamics shown

in Figs. 2 and 3 is a dynamical phase transition [28–31] that
is reminiscent of a second-order quantum phase transition.
To capture features of the quantum criticality, we numeri-
cally study the finite size scaling behavior. Figure 4 shows
both the critical pump rate wN for finite N and the
corresponding Γ at wN . The scaling laws of ðwN − wcÞ=
wc ≃ N−0.34 and Γ=γc ≃ N0.66 can be identified.
In Hamiltonian systems, a quantum phase transition

results from the competition between two noncommuting
Hamiltonian components with different symmetries on
changing their relative weight. The transition between
the two distinct quantum phases can be identified from
the nonanalytical behavior of an order parameter and the
scaling behavior of certain correlation functions that
diverge at the critical point. By analogy, the synchroniza-
tion phase transition is caused by the competition between

unitary dynamics that is parametrized by δ and enters
asymmetrically for the two ensembles and driven-
dissipative dynamics parametrized by γc that is symmetric.
The order parameter Δ is zero in the synchronized phase
and nonzero in the unsynchronized phase. The critical
behavior is encapsulated by the divergence of the relative
quantum phase diffusion. It should be emphasized that the
treatment given here is quite different from the typical
analysis since the transition is embodied by the character-
istic features of the two-time correlation functions, rather
than the behavior of an energy gap or correlation length.
In the thermodynamic limit, simple expressions for hσ̂z1i

to leading order in 1=N can be obtained:

hσ̂z1i ¼

8>><
>>:

w
2Nγc

if δ ¼ 0

w2þδ2

2wNγc
if 0 < δ < w

w
Nγc

if δ ≥ w;

ð11Þ

where w should be such that hσ̂z1i < 1. A critical point at
wc ¼ δ can be found by substituting Eq. (11) into Eq. (10).
In particular, Δ ¼ ðδ2 − w2Þ1=2 in the unsynchronized
phase, which shows an analogous critical exponent to that
of a second-order quantum phase transition, i.e., β ¼ 1=2.
In conclusion, we have presented a system that exhibits

quantum synchronization as a modern analogue of the
Huygens experiment but is implemented using state-of-the-
art neutral atom lattice clocks of the highest precision. It
will be intriguing in future work to study the many possible
extensions that are inspired by these results, such as the
effect of an atom number imbalance on the synchronization
dynamics, and the sensitivity of the phase locking to
external perturbation.

We acknowledge stimulating discussions with J. Cooper,
J. G. Restrepo, D. Meiser, K. Hazzard, and A. M. Rey. This
work has been supported by the DARPA QuASAR pro-
gram, the NSF, and NIST. This work is supported by the
National Science Foundation under Grant No. 1125844.

[1] S. H. Strogatz, Sync: The Emerging Science of Spontaneous
Order (Hyperion, New York, 2003).

[2] M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski,
and T. Kapitaniak, Phys. Rep. 517, 1 (2012).

[3] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchroniza-
tion: A Universal Concept in Nonlinear Sciences
(Cambridge University Press, Cambridge, England, 2001).

[4] S. Bregni, Synchronization of Digital Telecommunications
Networks (Wiley, Chichester, England, 2002).

[5] Y. Kuramoto, Chemical Oscillations, Waves and Turbu-
lence (Courier Dover Publications, New York, 2003).

[6] J. Acebrón, L. Bonilla, C. Pérez Vicente, F. Ritort, and
R. Spigler, Rev. Mod. Phys. 77, 137 (2005).

[7] M. C. Cross, A. Zumdieck, R. Lifshitz, and J. L. Rogers,
Phys. Rev. Lett. 93, 224101 (2004).

FIG. 4 (color online). Finite size scaling behavior of the
quantum criticality for δ ¼ Nγc=2. For N → ∞, the critical pump
rate is wc ¼ δ. The red dots show the offset between the critical
pump rate wN for finite N and wc. The blue squares show Γ (in
units of γc) at wN . Both exhibit linear scalings on the log-log plot.

PRL 113, 154101 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

10 OCTOBER 2014

154101-4

http://dx.doi.org/10.1016/j.physrep.2012.03.002
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1103/PhysRevLett.93.224101


[8] C. A. Holmes, C. P. Meaney, and G. J. Milburn, Phys. Rev.
E 85, 066203 (2012).

[9] G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F.
Marquardt, Phys. Rev. Lett. 107, 043603 (2011).

[10] A. K. Jain, K. K. Likharev, J. E. Lukens, and J. E. Sauvageau,
Phys. Rep. 109, 309 (1984).

[11] K. Wiesenfeld, P. Colet, and S. H. Strogatz, Phys. Rev. Lett.
76, 404 (1996).

[12] C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph. W.
Courteille, G. R. M. Robb, N. Piovella, and R. Bonifacio,
Phys. Rev. Lett. 93, 083601 (2004).

[13] G. R. M. Robb, N. Piovella, A. Ferraro, R. Bonifacio, Ph. W.
Courteille, and C. Zimmermann, Phys. Rev. A 69, 041403
(R) (2004).

[14] A. T. Winfree, J. Theor. Biol. 16, 15 (1967).
[15] O. Kogan, J. L. Rogers, M. C. Cross, and G. Refael, Phys.

Rev. E 80, 036206 (2009).
[16] O. V. Zhirov and D. L. Shepelyansky, Phys. Rev. B 80,

014519 (2009).
[17] A. Mari, A. Farace, N. Didier, V. Giovannetti, and R. Fazio,

Phys. Rev. Lett. 111, 103605 (2013).
[18] T. E. Lee and M. C. Cross, Phys. Rev. A 88, 013834 (2013).
[19] T. E. Lee, C.-K. Chan, and S. Wang, Phys. Rev. E 89,

022913 (2014).
[20] A. M. Hriscu and Y. V. Nazarov, Phys. Rev. Lett. 110,

097002 (2013).
[21] T. E. Lee and H. R. Sadeghpour, Phys. Rev. Lett. 111,

234101 (2013).
[22] S. Walter, A. Nunnenkamp, and C. Bruder, Phys. Rev. Lett.

112, 094102 (2014).
[23] I. H. de Mendoza, L. A. Pachón, J. Gómez-Gardeñes, and

D. Zueco, arXiv:1309.3972.

[24] D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, Phys.
Rev. Lett. 102, 163601 (2009).

[25] D. Meiser and M. J. Holland, Phys. Rev. A 81, 033847
(2010); 81, 063827 (2010).

[26] J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J.
Holland, and J. K. Thompson, Nature (London) 484, 78
(2012).

[27] J. G. Bohnet, Z. Chen, J. M. Weiner, K. C. Cox, and J. K.
Thompson, Phys. Rev. A 88, 013826 (2013).

[28] S. Diehl, A. Tomadin, A. Micheli, R. Fazio, and P. Zoller,
Phys. Rev. Lett. 105, 015702 (2010).

[29] A. Tomadin, S. Diehl, and P. Zoller, Phys. Rev. A 83,
013611 (2011).

[30] E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M. D.
Lukin, and J. I. Cirac, Phys. Rev. A 86, 012116 (2012).

[31] B. Horstmann, J. I. Cirac, and G. Giedke, Phys. Rev. A 87,
012108 (2013).

[32] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.113.154101, which in-
cludes Refs. [33]–[34]. In the Supplemental Material, we
have validated the closed set of Eqs. (5)–(7) by comparison
with exact solutions of the quantum master equation based
on applying the SU(4) group theory. These results show that
the approximations we employ are sufficient to account for
the essential quantum correlations in the system.

[33] M. Xu, D. A. Tieri, and M. J. Holland, Phys. Rev. A 87,
062101 (2013).

[34] H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901
(2002).

[35] M. Lax, Phys. Rev. 129, 2342 (1963); C. W. Gardiner,
Quantum Noise (Springer-Verlag, Berlin, 1991).

[36] M. Xu and M. J. Holland, arXiv:1407.5132.

PRL 113, 154101 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

10 OCTOBER 2014

154101-5

http://dx.doi.org/10.1103/PhysRevE.85.066203
http://dx.doi.org/10.1103/PhysRevE.85.066203
http://dx.doi.org/10.1103/PhysRevLett.107.043603
http://dx.doi.org/10.1016/0370-1573(84)90002-4
http://dx.doi.org/10.1103/PhysRevLett.76.404
http://dx.doi.org/10.1103/PhysRevLett.76.404
http://dx.doi.org/10.1103/PhysRevLett.93.083601
http://dx.doi.org/10.1103/PhysRevA.69.041403
http://dx.doi.org/10.1103/PhysRevA.69.041403
http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1103/PhysRevE.80.036206
http://dx.doi.org/10.1103/PhysRevE.80.036206
http://dx.doi.org/10.1103/PhysRevB.80.014519
http://dx.doi.org/10.1103/PhysRevB.80.014519
http://dx.doi.org/10.1103/PhysRevLett.111.103605
http://dx.doi.org/10.1103/PhysRevA.88.013834
http://dx.doi.org/10.1103/PhysRevE.89.022913
http://dx.doi.org/10.1103/PhysRevE.89.022913
http://dx.doi.org/10.1103/PhysRevLett.110.097002
http://dx.doi.org/10.1103/PhysRevLett.110.097002
http://dx.doi.org/10.1103/PhysRevLett.111.234101
http://dx.doi.org/10.1103/PhysRevLett.111.234101
http://dx.doi.org/10.1103/PhysRevLett.112.094102
http://dx.doi.org/10.1103/PhysRevLett.112.094102
http://arXiv.org/abs/1309.3972
http://dx.doi.org/10.1103/PhysRevLett.102.163601
http://dx.doi.org/10.1103/PhysRevLett.102.163601
http://dx.doi.org/10.1103/PhysRevA.81.033847
http://dx.doi.org/10.1103/PhysRevA.81.033847
http://dx.doi.org/10.1103/PhysRevA.81.063827
http://dx.doi.org/10.1038/nature10920
http://dx.doi.org/10.1038/nature10920
http://dx.doi.org/10.1103/PhysRevA.88.013826
http://dx.doi.org/10.1103/PhysRevLett.105.015702
http://dx.doi.org/10.1103/PhysRevA.83.013611
http://dx.doi.org/10.1103/PhysRevA.83.013611
http://dx.doi.org/10.1103/PhysRevA.86.012116
http://dx.doi.org/10.1103/PhysRevA.87.012108
http://dx.doi.org/10.1103/PhysRevA.87.012108
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.154101
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.154101
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.154101
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.154101
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.154101
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.154101
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.154101
http://dx.doi.org/10.1103/PhysRevA.87.062101
http://dx.doi.org/10.1103/PhysRevA.87.062101
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1103/PhysRev.129.2342
http://arXiv.org/abs/1407.5132

