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A beam with an angular-dependant phase Φ ¼ lϕ about the beam axis carries an orbital angular
momentum of lℏ per photon. Such beams are exploited to provide superresolution in microscopy. Creating
extreme ultraviolet or soft-x-ray beams with controllable orbital angular momentum is a critical step
towards extending superresolution to much higher spatial resolution. We show that orbital angular
momentum is conserved during high-harmonic generation. Experimentally, we use a fundamental beam
with jlj ¼ 1 and interferometrically determine that the harmonics each have orbital angular momentum
equal to their harmonic number. Theoretically, we show how any small value of orbital angular momentum
can be coupled to any harmonic in a controlled manner. Our results open a route to microscopy on the
molecular, or even submolecular, scale.
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Light beams carry orbital angular momentum (OAM)
when their Poynting vector spirals around the propagation
direction. Allen et al. showed that Laguerre-Gaussian
modes have such a property [1]. These modes are described
by an angular-dependant phase Φ ¼ lϕ, where the topo-
logical charge l is an index that indicates the OAM carried
by each photon in the beam and ϕ is the azimuthal angle.
Laguerre-Gaussian modes do not have a well-defined phase
at their center, which leads to their characteristic zero-
intensity center. These two characteristics, the spiraling
Poynting vector and the zero on-axis intensity, have given
rise to a rich variety of applications: in optical communi-
cations, Laguerre-Gaussian beams are used to encode
multiple bits in one photon [2,3]; in biophotonics,
Stimulated Emission Depletion (STED) microscopy
exploits the zero intensity to achieve resolution up to
λ=25 [4–7]; in optical manipulation, light beams are used
to trap small objects or molecules and OAM is transferred
to induce rotation in the trapped objects [8,9].
Previous experiments have shown that OAM can be

transferred to shorter wavelengths by perturbative nonlinear
processes [10–12]. However, high-harmonic generation is
not perturbative [13]: the total number of photons involved
in a high-order process is not well defined. To date, the only
experiment to consider coupling OAM from a fundamental
to thenth harmonic demonstrated that the topological charge
of all high-order harmonics is equal to that of the funda-
mental [14]. In contrast, the only theoretical treatment
predicts it should be equal to the harmonic number [15].

We develop a model based on the strong-field approxi-
mation and confirm that orbital angular momentum is
conserved in high-harmonic generation. Experimentally,
using argon as the nonlinear medium and an 800 nm pump
beam with l ¼ �1, we measure that the 11th, 13th, and
15th harmonics have topological charges of l ¼ 11,
l ¼ 13, and l ¼ 15, respectively. Thus, both our model
and experimental results confirm that the topological
charge of the nth harmonic is equal to n times that of
the fundamental; i.e., lharmonic ¼ nlfundamental. However,
this transfer is very sensitive to any imperfections in the
fundamental beam. Therefore, we introduce a robust new
method where any value of OAM can be transferred to any
high-order harmonic using nonlinear wave mixing. Thus,
we open a new wavelength range for OAM studies and a
new direction for high-harmonic spectroscopy.
Our model treats the interaction of the pump beam with

atoms having characteristics of argon [16]. We choose
parameters to represent our experimental configuration,
which are l ¼ 1, λ ¼ 800 nm, and a pulse duration of
30 fs. We represent the complex amplitude of the pump as a
two-dimensional matrix, and at each point we calculate the
single-atom response using the strong-field approximation
(see Supplemental Material, Sec. S1 [17]) [18,19]. From
this model, we obtain the time-dependant electric field of
the attosecond pulse train generated at each transverse point
of the input beam. The amplitude and phase of each
harmonic in the far field of the gas jet is obtained by
performing a Fourier transform in time and in space.
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The intensity profile that we predict for each harmonic is
characteristic of an optical vortex. The model also predicts
that the phase of the nth harmonic is equal to the phase of
the fundamental multiplied by n. In other words, our model
predicts conservation of OAM in high-harmonic genera-
tion, which is a natural extension to what has already been
reported for second-harmonic generation, and in agreement
with a recent theoretical analysis [15].
Experimentally, we generate high-order harmonics by

focusing a λ ¼ 800 nm pump laser beam into a gas jet of
argonwith a 30 cm lens; see Fig. 1. The generated harmonics
propagate to the far field and are detected by an imaging
spectrometer. The spectrometer is composed of a vertical
slit, a 1200 lines=mm grating, a microchannel plate (MCP),
and a CCD camera; the plane of the slit is imaged onto the
MCP using the imaging grating (Hitachi 001-0266), and the
CCD camera records the intensity on the phosphor screen of
the MCP. The grating separates the harmonic orders by
mapping wavelength to the horizontal axis of the MCP. In
order tomeasure the full transverse profile of each harmonic,
the slit and grating are both moved by a microstage. This
setup allows us to measure the transverse intensity profiles
from the 11th to the 15th harmonic. To impart OAM to the
pumpbeam,we place a spatial lightmodulator (SLM)before
the focusing lens. We use a 100 Hz Ti:sapphire laser of 1 mJ
per pulse incident on the SLM (PLUTO-BB-HR from
Holoeye), which has a low retardance panel for increased
phase stability. A forked diffraction pattern is displayed
on the SLM [20], creating an l ¼ 1 beam in the first
diffraction order. The grating efficiency is approximately
78%. A long period-grating pattern is used to minimize
angular dispersion in the first diffraction order (see Sec. S2
of the Supplemental Material [17]) [21,22]. The separation
between the zeroth and the first order at the focus is 121 μm,
around 3.5 times the beam waist diameter at focus.

For every harmonic order, we observe a doughnut-shaped
mode with an intensity zero on the beam axis (see Fig. 1 for
the 13th harmonic). Thus, the intensity profiles of the
experimentally produced harmonics correspond to the
theoretical prediction of the generation of optical vortices.
To assess the OAM content of the mode, we must

measure the phase structure of the beam. A measurement
can be achieved by interference with a flat-phase reference.
In the laboratory, the interference between a beam with a
topological charge l and an inclined Gaussian beam
satisfies this condition. It produces an l-forked fringe
pattern [20]; the difference in the number of fringes on
either side of the interference pattern is the charge of the
optical vortex. To create a reference beam in the extreme
ultraviolet, the diffraction grating displayed on the SLM is
modified to decrease its diffraction efficiency. We control
the relative powers in the zeroth and first diffraction orders
by modifying the phase depth of the blazed diffraction
grating. A full 2π modulation maximizes the power in the
first diffracted order; reducing the modulation depth
reduces the power in the first order and increases the
power in the zeroth order. It follows that harmonics can
then be generated from both the zeroth and first order. The
zeroth order contains no OAM and consequently generates
Gaussian harmonics that we use as references (Fig. 2). The
modeled outcome of such an experiment, including
space-time coupling induced by the SLM grating, is shown
in Fig. 2 and is consistent with the conservation of OAM in
the generation of high harmonics; i.e., lharmonic ¼
nlfundamental. The difference of fringes between the right-
and left-hand sides of the interference pattern is the
topological charge lharmonic ¼ n (see upper left-hand
images of Fig. 2). Additionally, a vertical Fourier transform
allows us to conveniently evaluate the OAM of the
generated mode: the number of fringes along the horizontal
axis is equal to lþ 1 (see lower left-hand images of Fig. 2).
With the reference beam, we measure the OAM content

for the harmonics n ¼ 11, 13, and 15 produced from a
l ¼ �1 pump beam (Fig. 2). For the 11th harmonic, we
measure a difference of 11 fringes between the left- and
right-hand sides of the interference pattern and 12 lobes in
the vertical Fourier transform (see Sec. S3 of the
Supplemental Material for details [17]). The patterns are
reversed in the right-hand images where the charge of the
pump beam is l ¼ −1. Thus, both our model and our
experiment confirm that the 11th harmonic contains 11
times the OAM of the pump.
Because of the increasing spatial frequency, the decreas-

ing overlap between the OAM and reference beam, and the
lower divergence of harmonics 13 and 15, the fringe
visibilities decrease for the harmonics n ¼ 13 and 15.
We thus use a different method to analyze the patterns: we
estimate the number of fringes by measuring the size of the
beam and the fringe frequency on both sides. In Fig. 3, we
approximate where there is a fringe on the top and bottom
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FIG. 1 (color online). (a) OAM is imparted to the pump with a
spatial light modulator. (b) High-order harmonics are generated in
argon and (c) measured in a spectrometer. The grating allows us
to resolve each harmonic. Moving the slit and grating horizon-
tally allows us to recover the full transverse profile of the
harmonics. (d) Intensity profile for the 13th harmonic. All
harmonics show the same characteristic intensity profile.
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that is present on both sides of the pattern and trace its
position by a line. We then use the Fourier analysis to have
a value of the fringe frequency at two θx positions. We
choose two positions where the frequency component is
bright; at those two positions, we measure the size of the
beam by taking the distance Δθy between the two red lines
traced on the interference patterns. We find the number of
fringes by multiplying the fringe frequency by the size
of the beam. Using this procedure, we find a difference of
13.1� 1.5 and 14.9� 1.5 fringes for harmonics 13 and 15,
respectively. Again, we find that orbital angular momentum
is conserved.
As we increase in harmonic number, the OAM trans-

ferred should continue to increase as lharmonic ¼
nlfundamental. However, beams with shorter wavelengths
and higher OAM will be highly sensitive to aberrations and
defects in the experimental setup. For example, the slight
imperfection placed on the beam by the SLM will even-
tually impose a limit. To avoid problems that come with

increasing charge lharmonic, we use our model to demon-
strate how any small OAM value can ge given to any high
harmonic. The core of our method is to generate harmonics
from a forked-grating pattern inside the gas jet (see Fig. 4).
To obtain a forked-grating interference pattern in the gas,
we combine a main pump beam along the principal axis of
propagation with a control beam that has l ¼ 1 (or more)
arriving at a small incident angle [23]. This interference
pattern is analogous to the forked pattern displayed on a
spatial light modulator to generate OAM beams.
For the simulation we use an 800 nm Gaussian beam

propagating forward with an intensity of 1014 W=cm2 at
focus, and a 400 nm, l ¼ 1 beam arriving at an angle of
2.3° with 10% of the main beam intensity and 50% of the
main beam size at the SLM. At focus, the perturbing beam
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FIG. 3 (color online). In the two top figures, we approximately
trace the fringes on top and bottom that are linked from left
to right. We measure the beam size between these fringes at two
x positions (with uncertainty �0.1 mrad) and measure the
frequency at these positions with the bottom figures (uncertainty
�0.1 mrad−1). (a) For harmonic 13: on the left (θx ¼
−3.6 mrad), the beam size is Δθy ¼ ð5.6þ 5.3Þ10.90�
0.14 mrad; on the right (θx ¼ 5 mrad), the size is Δθy ¼
ð4.8þ 4.3Þ9.10� 0.14 mrad. The frequency on the left is
2.2 mrad−1 so that the number of fringes is 23.98� 1.13. The
frequency on the right is 1.2 mrad−1 so that the number of fringes
is 10.92� 0.93. The difference is 13.1� 1.5 fringes. (b) For
harmonic 15: on the left (θx ¼ −4 mrad), the beam size is
Δθy ¼ ð5.7þ 5.7Þ11.40� 0.14 mrad; on the right (θx ¼
3 mrad), the size is Δθy ¼ ð5.2þ 4.4Þ9.60� 0.14 mrad. The
frequency on the left is 2.4 mrad−1 so that the number of fringes
is 27.36� 1.19. The frequency on the right is 1.3 mrad−1 so that
the number of fringes is 12.48� 0.98. The difference is 14.9� 1.5
fringes. In both cases, the results show that OAM is conserved.
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FIG. 2 (color online). (a) Generating harmonics from two
distinct beams at focus creates an OAM beam and a Gaussian
reference beam. (b) The interference, in the far field, of the
harmonic beam containing OAM and a Gaussian harmonic beam
results in a n-fork interference pattern as shown in the upper left-
hand image, where n is the OAM per photon of the nth harmonic.
The vertical Fourier transform of such a pattern exhibits increasing
frequency from one side of the beam to the other, with nþ 1 steps,
as shown in the lower left-hand image. Experimentally, the
interference patterns and their Fourier analysis are similar to those
predicted. For harmonic 11, we count a difference of 11 fringes
between left and right for harmonics produced from a l ¼ �1
fundamental beam. The chargel of the harmonic is reversedwhen
we inverse the charge of the fundamental beam. These results
confirm that OAM is conserved in high-harmonic generation.
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has 2.6% of the main beam’s peak intensity. These
parameters are similar to those used in a recent experiment
studying how high-harmonic generation can be perturbed
[23]. Using a control beam that is the second harmonic of
the pump beam is not essential, but it is convenient because
we can identify the net number of control beam photons
contributing to a harmonic by both its direction and its
harmonic order. Figure 4 shows the far field of the
harmonics, where a range of OAM values is generated in
the different diffraction orders. Although high-harmonic
generation is a nonperturbative process, it is perturbative
with respect to the control beam [23]. In Fig. 4, theGaussian-
shaped harmonics on axis (θy ¼ 0 mrad) are harmonics of
the main 800 nm beam. They have no OAM. The harmonics
above and below (θy ≈ 7 mrad) have one 400 nm photon
mixed with n� 2 800 nm photons. All of these harmonics
have the intensity (shown) and phase (not shown) structure
of a l ¼ �1 charged beam. Higher-order perturbative
peaks are seen at θy ≈ 15 mrad and θy ≈ 22 mrad. They
have OAM of l ¼ −2 and l ¼ −3, respectively. As the
harmonic generation is perturbative with respect to the
control beam, the diffracted intensity will increase with
the second-harmonic intensity and higher diffractive orders
will appear and gain strength [23].

Before concluding we comment on the sensitivity of our
results to beam imperfections. A Gaussian fundamental
beam, interacting with an atomic medium under conditions
where phase matching is maintained, produces high har-
monics that are beautifully Gaussian in intensity and
parabolic in phase [24]. This is because, in the far field
of the fundamental (near where the jet is placed), there is a
well-formed intensity maximum. Imperfections on the
fundamental beam create spatial wings on the beam, but
their influence on the high harmonics is strongly sup-
pressed by the highly nonlinear nature of the process. In
contrast, an OAM beam has a ring-shaped intensity dis-
tribution at the focus and small imperfections to the ring are
“amplified” by the high-order nonlinearity. This influences
both the phase and the amplitude structure of the produced
harmonics. Coupling OAM onto a Gaussian fundamental
using a perturbing beam gives us many of the advantages of
Gaussian harmonic generation. We do not expect extreme
sensitivity to small imperfections on the perturbing beam
with this approach, and we expect it will be effective for
producing harmonics.
Controlling the OAM transfer to high-order harmonics

provides an accessible, tabletop source of high photon
energy OAM beams that can be extended to 1.6 keV
[25]. X-ray focusing optics, such as zone plates, now
allow soft x ray with a focal spot as small as 15 nm, for
photon energy between 250 and 1.8 keV [26]. Therefore,
focusing OAM beams to this scale seems feasible. In this
spectral region, conversion efficiencies to a single har-
monic approach 10−7 and megawatt power pulses could
be produced. Not only do soft x rays promise enhanced
resolution, but they have the added advantage of sensi-
tivity to the environment near specific atomic species
within molecules or solids. They will open nondipole
spectroscopy for study [27].
A potential approach to STED-like microscopy is also

opened. The critical idea in STED microscopy is to identify
those molecules that were uninfluenced by an OAM beam.
X rays offer at least one route to this end that was not
available in the visible. We could employ an OAM soft-
x-ray beam that is tuned to a specific core-to-valence
transition. Excitation (or ionization) caused by this beam
will shift all energy levels of the molecule. Now, for
superresolution we must identify the unexcited molecules.
We can achieve this using a Gaussian, resonant soft-x-ray
beam tuned to a transition in the unionized molecule.
Finally, Auger electrons from the decay of the excitation
created by the Gaussian pulse can play the role of
fluorescence photons in STED.
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FIG. 4 (color online). (a) Controlling high-harmonic generation
with a second-harmonic, l ¼ 1 beam incident at an angle creates
a rapidly moving grating at the focal plane, shown here at a given
instant. (b) Harmonics are created in the different diffraction
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