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The trajectory surface hopping method for quantum dynamics is reformulated in the space of many-
particle states to include entanglement and correlation of trajectories. Used to describe many-body
correlation effects in electronic structure theories, second quantization is applied to semiclassical
trajectories. The new method allows coupling between individual trajectories via energy flow and
common phase evolution. It captures the properties of a wave packet, such as branching, Heisenberg
uncertainty, and decoherence. Applied to a superexchange process, the method shows very accurate results,
comparable to exact quantum data and improving greatly on the standard approach.
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An accurate description of quantum dynamics is needed
in many areas of physics and related disciplines, including
photovoltaic and photocatalytic applications [1–3], light-
operated nanoscale materials [4,5] and molecular electron-
ics [6–9]. The large number of quantum, semiclassical,
and quantum-classical techniques of varying complexity
have been developed over the last few decades [10–15] and
successfully applied to study nonequilibrium processes
such as electron-phonon relaxation [1,16–18], charge and
energy transfer [19,20], and photoinduced atomistic rear-
rangements [21,22]. Highly accurate fully quantum meth-
ods [23–25] are extremely computationally demanding and
can be applied only to small systems and short time scales.
Semiclassical schemes [26–28] are significantly more
efficient and can be used with large systems. However,
they provide only an approximate description and lack
quantum effects, such as branching, uncertainty principle,
zero-point energy, tunneling, and decoherence. Existing
approaches that introduce these effects are either phenom-
enological [29,30] or mathematically and computationally
involved [12,13,24,31–34]. Tully’s fewest-switches surface
hopping (FSSH) [26] is one of the most successful and
widely used semiclassical methods, cited over 1000 times.
The great popularity of the method can be attributed to its
conceptual simplicity, acceptable accuracy, and high com-
putational efficiency, which makes simulations of large
systems feasible.
FSSH represents a quantum wave packet by a swarm of

independent trajectories. This representation lacks intrinsi-
cally quantum effects. Some quantum effects can be
introduced via phenomenological corrections, for example,
by requiring the swarmof trajectories to have an initial spread
in momenta and positions [26], or by mapping quantum
variables on classical phase space [35]. Nonetheless, a swarm
of decoupled classical trajectories does not properly re-
present a quantum-mechanical wave packet, in particular,
since subsequent evolution does not allow energy exchange
between the trajectories. Each trajectory conserves its

energy in FSSH. To represent a wave packet, one needs
to satisfy conservation of the total energy of the swarm,
allowing energy exchange between individual trajectories.
As a result, FSSH lacks quantum tunneling and is unable
to describe closely related superexchange processes.
Disentangled-trajectory approaches also lack decoherence
effects. From the multiple trajectory point of view,
decoherence arises because trajectories diverge and each
trajectory acquires its own phase factor. Available from
the simulation, this information is never utilized in FSSH.
The lack of communication between evolving trajectories
causes an excessive preservation of coherences, making
FSSH overcoherent.
In this Letter, we report a new semiclassical method for

description of quantum electron-phonon dynamics. Called
second-quantized surface hopping (SQUASH), the method
constructs a space of multitrajectory states and applies
the FSSH technique in this space. The multitrajectory
states are analogous to a many-particle basis in electronic
structure theory. Obtained via second quantization, the
many-particle basis is utilized to add correlation effects.
SQUASH uses multitrajectory states to introduce corre-
lation between trajectories via energy-based entanglement.
The evolution of the quantum degrees of freedom for each
trajectory is independent of all other trajectories; however,
the surface hopping procedure performed in the multi-
trajectory basis entangles all trajectories and introduces
intrinsically quantum effects, such as energy uncertainty,
electronic decoherence, and tunneling. The SQUASH
procedure requires conservation of the total energy of
all entangled trajectories, but permits energy flow between
individual trajectories, mimicking closely the properties of
a quantum wave packet. The efficiency and utility of the
approach is demonstrated with a superexchange process
that is common to nanoscale and molecular systems. The
proposed method is highly accurate and conceptually very
simple. It provides a straightforward route to paralleliza-
tion, facilitating its use for studies of large-scale systems.
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The time-dependent wave function ψ associated with an
individual semiclassical trajectory is represented in terms
of a quantum basis jii, which plays the role of 1-particle
states:

ψð1Þ ¼
X
i

cið1Þjii: ð1Þ

Here, ciðtÞ are time-dependent expansion coefficients
and ð1Þ indicates that all quantities depend on properties
of a single trajectory (particle number 1). The time
evolution of the wave function coefficients is given by
the standard semiclassical time-dependent Schrodinger
equation (TDSE):

iℏ_cið1Þ ¼
X
j

Hijð1Þcjð1Þ; ð2Þ

where ℏ is the reduced Planck constant, the dot indicates
the partial derivative with respect to time, and H is the
Hamiltonian matrix. In a system comprised of electronic
and nuclear degrees of freedom, the diagonal terms of
the Hamiltonian contain the energies of electronic states
Ei and kinetic energy of nuclei T:

Hijð1Þ ¼ ½Tð1Þ þ Eið1Þ�δij þ ð1 − δijÞVij: ð3Þ
The off-diagonal elements Vij may contain only elec-
tronic couplings (diabatic basis), or only nonadiabatic
couplings (adiabatic basis), or both (arbitrary basis). For
notation simplicity, we use the diabatic representation.
Generalization to an arbitrary basis is straightforward.
The choice of a particular representation is motivated by

physical and computational considerations. The accuracy
of the FSSH is generally higher in the adiabatic represen-
tation, which is commonly available in the standard
electronic structure calculations. However, the adiabatic
representation fails in many situations. It causes insur-
mountable numerical problems in extended systems,
because nonadiabatic couplings between states located
within distant subsystems increase to infinity in avoided
crossing regions [36]. The adiabatic representation cannot
describe the physics of transition from coherent to hopping
transport in long-range charge and energy transfer [37].
Diabatic representations are much more reliable and give
better results in such cases.
The use of a diabatic basis is encouraged by the

fragment-based or multiconfiguration electronic structure
methods, including the valence bond and constrained
density functional theories. Diabatic states are readily
available in these approaches, even in large systems.
They are associated with different exciton and charge
localization states in biological and nanoscale materials,
and reactants and products in reactive systems.
The diabatic representation is chosen in this work to

illustrate the superexchange mechanism, which is common
to many physical processes mediated by high-energy

intermediate states. The mechanism is best understood in
the diabatic picture. Superexchange is possible between
adiabatic states as well. For instance, the initial and final
adiabatic electronic states in Raman-type processes are
coupled to a high-energy intermediate adiabatic state by
electromagnetic field. The advantages of the developed
approach apply to both diabatic and adiabatic representations.
We consider the basis of N-particle states, jINi ¼

ji1iji2i � � � jiNi (Fig. 1). The N-particle wave function
can be written as

Ψð1;2;…;NÞ ¼
X
I

CIð1;2;…;NÞjINi

¼
X

i1;i2;…;iN

ci1ð1Þci2ð2Þ…ciN ðNÞji1iji2i…jiNi:

ð4Þ
The sum in Eq. (4) includesMN distinctN-particle states and
corresponding N-particle coefficients, CIð1; 2;…; NÞ ¼
ci1ð1Þci2ð2Þ…ciN ðNÞ, where M is the number of 1-particle
states. According to its definition, the time evolution of the
N-particle coefficient is given by

iℏ _CIð1;2;…;NÞ¼ iℏ
XN
k¼1

_cikðkÞ
YN
n¼1

n≠k

cinðnÞ

¼
XN
k¼1

X
j

HikjðkÞ
�
cjðkÞ

YN
n¼1

n≠k

cinðnÞ
�

¼
XMN

J¼1

HIJð1;2;…;NÞCJð1;2;…;NÞ. ð5Þ

FIG. 1. Construction of N-particle states from 1-particle states
for a 3-level system. (a) 1-particle state basis used in the FSSH
method; (b) 6 of 9 possible 2-particle states. All particles are
distinguishable. N-particle state energies are normalized to the
number of particles. Each energy level can be occupied by any
number particles from 0 to N, provided that the total number of
particles distributed in all levels is N. Additional lower-energy
levels are created between the original states j1i and j2i.
Utilizing only the 2-particle states denoted by black lines in the
top section of part (b) is equivalent to the 1-particle FSSH
scheme of panel (a).
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Equation (5) is an N-particle analog of the 1-particle Eq. (2).
The solution of Eq. (5) is equivalent to solution of N
Eqs. (2). Therefore, one does not need to propagate
N-particle coefficients by directly solving Eq. (5). Instead,
one solves N independent TDSEs one at a time. The main
result that Eq. (5) conveys is the definition of the energies of
N-particle states and the couplings between them. As
intuitively expected, the energy (either potential or kinetic)
of anN-particle state in this model is given by the sum of the
corresponding 1-particle energies. The structure of the
coupling matrix between many-particle states is less trivial,
and can be obtained explicitly by considering the map-
ping, Eq. (5).
Starting with Eq. (5), and following the term separation

procedure similar to the one performed in the derivation
of the original 1-particle FSSH [26], one can obtain the
expression for the hopping probabilities between many-
particle states. The expression is formally identical to the
one in FSSH, and only requires an explicit definition of the
N-particle coefficients,CJð1; 2;…; NÞ, and the N-particle
Hamiltonian matrix elements HIJð1; 2;…; NÞ. The
SQUASH method modifies the velocity rescaling pro-
cedure, as explained below. The rest of the SH algorithm
remains the same as in the original FSSH.
The velocity rescaling procedure in SQUASH mimics

wave packet energy conservation in quantum mechanics:
The rescaling does not enforce energy conservation for
each 1-particle trajectory. Rather, one considers the total
energy of the N-particle ensemble. The sum of the kinetic
and potential energies of the initial and final states TI , EI
and TF, EF is conserved:

TI þ EI ¼ TF þ EF: ð6Þ

The transition to final state jFi is allowed only when
TF ¼ TI þ EI − EF ≥ 0. The resulting kinetic energy of
the N-particle state jFi is given by the sum of kinetic
energies of N 1-particle trajectories:

TF ¼
XN
i¼1

p2ðiÞ
2m

: ð7Þ

The N 1-particle momenta that satisfy Eq. (7) form an
N-dimensional hypersphere. Any point on this hypersphere
satisfies the energy conservation law, Eq. (6). In the
1-particle FSSH, the momentum variable for each individ-
ual trajectory is restricted to only 2 allowed values—the
end points of a one-dimensional sphere (line) of a smaller
radius (Fig. 2).
In the N-dimensional case, the choice of points on the

hypersphere is more flexible. The hypersphere is reduced to
a circle for the 2-particle basis (Fig. 2). We define momenta
of each of the two 1-particle trajectories by

pð1Þ ¼ P cos

�
ϕ
π

2

�
; ð8aÞ

pð2Þ ¼ P sin

�
ϕ
π

2

�
; ð8bÞ

where P is the magnitude of the total momentum, deter-
mined from the energy conservation, Eq. (6), and ϕðπ=2Þ is
the angle that determines the redistribution of momenta
among the two coupled trajectories. In the present scheme,
the parameter ϕ is set to 1

2
(solid line in Fig. 2) correspond-

ing to uniform scaling of the momenta of the two
trajectories.
The rescaled momenta, Eq. (8), can be generalized in a

multidimensional case to control kinetic energy redistrib-
ution among coupled individual trajectories. For example,
it is known that the classical limit of the momentum change
corresponds to rescaling in the direction of the derivative
coupling vectors [38]. The coupling of individual trajecto-
ries realized via energy redistribution can lead to nonuni-
form or random scaling of the absolute values of the
momenta, while complying with the classical limit of the
scaling direction. The SQUASH theory allows for more
general prescriptions. The choice of the most accurate
velocity-rescaling scheme requires further studies. In par-
ticular, we intend on investigating the quantum jump
schemes appearing in the quantum-classical formulations
based on the partial Wigner transform formalism [12,39].
To illustrate the accuracy of the SQUASH method, we

study the superexchange process in the 3-state model of
Wang et al. [40]. The model is motivated by Auger and
multiple exciton generation processes in nanoscale materi-
als [41–43] and singlet fission in organic photovoltaics,
which proceed via intermediate states [44]. The super-
exchange mechanism is also common in conductivity and
molecular electronics [6,7,9]. In superexchange, a quantum
transition between the initial and final states involves
intermediate states of higher energy. The intermediate

FIG. 2. Possible values of nuclear momenta in the rescaling
scheme in the case of two disentangled 1-particle trajectories (as
in FSSH) and one 2-particle trajectory (SQUASH).
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states never gain significant population and provide cou-
pling between the initial and final states.
The model consists of 3 states, with the energy alignment

corresponding to Fig. 1(a). The direct coupling between
states 1 and 2 set to zero. The Hamiltonian is defined
by E1ðxÞ ¼ 0, E2ðxÞ ¼ 0.005, E3ðxÞ ¼ 0.01, V12ðxÞ¼
V21ðxÞ¼0, V13ðxÞ¼V31ðxÞ¼0.001expð−x2=2Þ, V23ðxÞ ¼
V32ðxÞ ¼ 0.01 expð−x2=2Þ. The atomic units of length and
energy are used. The mass of the particle is set to
2000 a.u. The initial momenta of the trajectories are
sampled from the normal distribution centered at the
mean value. The spread of the distribution is 20% of
the mean value. Equations of motion for the electronic and
nuclear degrees of freedom are integrated using the 4th
order Runge-Kutta method with the time step of 0.1 fs,
until the trajectory leaves the coupling region. When
performing N-particle simulations, the final populations
of N-particle states are projected onto the 1-particle states.
For example, if the 2-particle trajectory ends up in the
state j1ij3i, 1=2 is added to the count of the 1-particle
state j1i and 1=2 is added to the count of the 1-particle
state j3i for each stochastic realization of the surface
hopping algorithm.
The 1-particle formulation of SQUASH is equivalent to

the original FSSH scheme. Nontrivial effects appear start-
ing from the 2-particle trajectories. The scattering proba-
bilities computed in the basis of 2-particle states (9 states in
the 3-level system) are shown in Fig. 3. We show only the
probabilities of transmission on states 2 and 3, because the
reflection probabilities are zero [40]. The probability of
transmission on state 1 can be inferred from the data in
Fig. 3. The performance of the new method is compared
with that of the standard FSSH and exact quantum results.
The transition probability on state 2 directly character-

izes the degree to which the superexchange effect is
accounted for by different methods. The SQUASH method
produces very accurate scattering probabilities—much
closer to the exact solution than FSSH, especially in the
region of low initial nuclear kinetic energy. The super-
exchange process for small initial momenta is possible in

SQUASH due to energy exchange between semiclassical
trajectories in the many-particle basis. In FSSH, one
encounters situations when the kinetic energy of each of
the two trajectories is insufficient to overcome the energy
barrier associated with state 3. In the entangled description,
the energy of one trajectory can be transferred to the
other one. The energy-donor trajectory cannot hop, but
the energy-acceptor trajectory can. This simple scheme
presents new physics behind surface hopping, and reflects
the quantum nature of wave packets. Thus, the SQUASH
formulation of trajectory surface hopping not only is more
accurate than FSSH, but also captures essential properties
of quantum dynamics in general, and superexchange in
particular.
To recapitulate, we have presented the new semiclassical

method for quantum dynamics. The method uses a second-
quantization representation of surface hopping, motivating
the name, SQUASH. It utilizes many-particle states for
performing surface hopping. By relaxing energy conserva-
tion for individual trajectories, and requiring the conserva-
tion at the multitrajectory level, SQUASH entangles
individual trajectories and represents faithfully the evolu-
tion of a quantum wave packet. At the single particle level,
SQUASH is equivalent to the extremely popular FSSH
semiclassical technique. Already at the 2-particle level,
SQUASH provides significant improvement at both quan-
titative and qualitative levels, as demonstrated with a model
representing the superexchange mechanism of quantum
transitions. The new approach maintains the conceptual
simplicity of surface hopping, introduces new physics, and
captures essential quantum phenomena, such as wave
packet splitting, the uncertainty principle, and decoherence.
The method is conceptually simple and computationally
efficient. It can be parallelized easily, to provide a further
boost in efficiency and allowing applications to large
systems.
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