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We study lattice QCD with four flavors of staggered quarks. In the limit of infinite gauge coupling,
“dual” variables can be introduced, which render the finite-density sign problem mild and allow a full
determination of the μ − T phase diagram byMonte Carlo simulations, also in the chiral limit. However, the
continuum limit coincides with the weak coupling limit. We propose a strong-coupling expansion approach
towards the continuum limit. We show first results, including the phase diagram and its chiral critical point,
from this expansion truncated at next-to-leading order.
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The properties of QCD as a function of temperature T
and matter density are summarized by its phase diagram,
whose determination is a major goal of heavy-ion experi-
ments. Although the quark-gluon plasma has been
observed at high temperature, further features of the phase
diagram, especially a possible QCD critical point, have not
been identified yet. Heroic efforts have been devoted to
numerical lattice simulations, which are the appropriate
tool for nonperturbative phenomena like phase transitions.
However, the fermion determinant becomes complex upon
turning on a chemical potential μ coupled to the quark
number. This so-called “sign problem” requires prohibi-
tively large computer resources growing exponentially with
the lattice 4-volume. Approaches to circumvent this prob-
lem are applicable when μ=T ≲ 1 only [1], and results on
the QCD critical point are inconclusive. We want to make
progress on this problem by means of a strong coupling
expansion as applied to zero density in the early days of
lattice gauge theory or, recently, to finite temperature and
density with heavy quarks [2,3]. Here we want to address
the opposite, chiral limit with a different strategy [4,5].
Note that both for heavy and chiral quarks, the strong
coupling approach gives access also to the cold and dense
regime of nuclear matter [3,6,7].
The sign problem occurs when elements

hψ ij expð−δτHÞjψ ji of the transfer matrix between states
jψ ii and jψ ji sampled by Monte Carlo simulations become
negative. This problem is representation dependent: in an
eigenbasis of the Hamiltonian, all matrix elements would
be non-negative. Thus, the sign problem will become
milder if we can express the partition function in terms
of approximate eigenstates. We know that QCD eigenstates
are color singlets. Therefore, instead of performing
Monte Carlo calculations on colored gauge links, as in
the usual approach, we integrate the gauge links first,
and work with the resulting color singlets. This strategy
becomes particularly practical in the strong coupling limit.

Here, we reexpress the partition function as a sum over
configurations of hadron worldlines, similar to the “dual
variables” used in [8]. The resulting sign problem is
extremely mild, allowing us to simulate large lattices at
arbitrarily large chemical potentials, and reliably obtain the
full phase diagram. Of course, in the strong coupling limit
g → ∞; β ¼ 2Nc=g2 → 0 (for Nc colors), the lattice is
maximally coarse, whereas the continuum limit coincides
with the weak coupling limit g → 0; β → ∞. In this Letter,
we first summarize the β ¼ 0 phase diagram and then
explain how to include the first OðβÞ corrections, which
allows us to measure Wilson loops at β ¼ 0 and fermionic
observables at OðβÞ. We then present the QCD phase
diagram for small β > 0. For μ ¼ 0, where we can cross-
check with the full Monte Carlo approach, perfect agree-
ment is found for small β.
We adopt the staggered fermion discretization and the

Wilson plaquette action with the partition function

ZQCD ¼
Z

dψdψ̄dUeSGþSF ;

SG ¼ β

2Nc

X
P

tr½UP þ U†
P�; ð1Þ

SF ¼ amq

X
x

ψ̄xψx þ
1

2

X
x;ν

ηνðxÞγδν0

× ½ψ̄xeatμδν0UνðxÞψxþν̂ − ψ̄xþν̂e−atμδν0U
†
νðxÞψx�; ð2Þ

with a and at the spatial and temporal lattice spacings,
γ the anisotropy by which one may tune a=at,mq the quark
mass, and μ the quark chemical potential. The η’s are the
usual �1 staggered phases. In the continuum limit g → 0,
our action describes QCD with 4 mass-degenerate quark
species. In the opposite limit g → ∞, the plaquette, four-
link coupling β vanishes and so does the gauge action SG.
Then, the integration over the links UνðxÞ factorizes into a
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product of one-link integrals which can be carried out
analytically [9]. Finally, one performs the Grassmann
integration over the fermion fields ψðxÞ; ψ̄ðxÞ, and obtains
the partition function in terms of color-singlet degrees of
freedom (mesons and baryons) [4], as a sum over discrete
graphs on the lattice (with Nc ¼ 3 for QCD):

ZSC ¼
X

fn;k;lg

Y
x

wx

Y
b

wb

Y
l

wl ð3Þ

wx ¼
Nc!

nx!
ð2amqÞnx ; wb ¼

ðNc − kbÞ!
Nc!kb!

: ð4Þ

The mesons are represented by monomers nx ∈ f0;…; Ncg
on sites x and dimers kb ∈ f0;…; Ncg on bonds b ¼ ðx; ν̂Þ,
whereas the baryons are represented by oriented self-
avoiding loops l. The weight wl of a baryonic loop l
and its sign depend on the loop geometry [10].
Configurations fn; k;lg must satisfy at each site x the
constraint inherited from Grassmann integration:

nx þ
X

ν̂¼�0̂;…;�d̂

�
kν̂ðxÞ þ

Nc

2
jlν̂ðxÞj

�
¼ Nc; ð5Þ

which implies that mesonic degrees of freedom cannot
occupy baryonic sites.
This system has been studied for decades, both via mean

field [11–16] and by Monte Carlo methods [5,7,10]. In
recent years, the latter have undergone a revival using the
worm algorithm [7,17,18], which violates the Grassmann
constraint in order to sample the monomer two-point
function Gðx; yÞ, from which the chiral susceptibility can
be obtained. These techniques have been applied to obtain
all lattice data presented here. We study the chiral limit
mq ¼ 0, which does not incur a penalty in computer cost,
contrary to the usual determinantal approach. The stag-
gered action SF Eq. (2) then satisfies a Uð1Þ “remnant”
chiral symmetry, which is spontaneously broken at low
temperature and density, with order parameter hψ̄ψi. In
Fig. 1 left, we show the (μ, T) phase diagram in the strong-
coupling limit. It is qualitatively similar to the expected
phase diagram of QCD in the chiral limit: the transition is
of second order from aμ ¼ 0 up to a tricritical point (aμT ,
aTT), then turns first order. At finite quark mass, the second
order line turns into a crossover and the tricritical point into
a second order critical endpoint. Note the different phase
boundaries obtained from lattices with different numbers
Nt of time slices: they converge to the continuous-time
phase boundary as Nt → ∞. The 1=Nt corrections can be
absorbed in a parametrization of a=at ¼ fðγÞ, with γ the
anisotropy needed to reach temperatures aT > 1=2 [18],
resulting in Fig. 1, right [19].
A crucial question is whether this phase diagram devel-

ops new features as β is increased from 0 to ∞. At low
temperature especially, things may change: when β ¼ 0,

the transition at μcðT ¼ 0Þ separates a chirally broken,
baryon-free vacuum and a chirally symmetric, baryon-
saturated state with one static baryon per lattice site. That
is a very crude cartoon of a nuclear matter phase: in the
continuum limit, depending on μ, it may evolve into a
nuclear liquid, a crystalline phase, a color superconductor,
etc. A first insight may be gained by considering OðβÞ
corrections to the β ¼ 0 phase diagram. At the same time,
we can also address an interesting quantitative issue: the
ratio Tcðμ¼0Þ=μcðT¼0Þ is about ð160MeVÞ=ð300MeVÞ
∼0.53 in nature, but about 1.402=0.75 ≈ 1.87 when β ¼ 0.
How does it vary with β?
Corrections to the strong coupling limit.—To go beyond

the strong coupling limit, a systematic expansion in β of
the partition function is needed, which we perform to
first order. Writing the β ¼ 0 partition function as ZSC ¼R
dψdψ̄ZF, with ZFðψ ; ψ̄Þ ¼

R
dUeSF the fermionic par-

tition function, the β ≠ 0 partition function Eq. (1) becomes

ZQCD ¼
Z

dψdψ̄dUeSFþSG ¼
Z

dψdψ̄ZFheSGiZF
; ð6Þ

heSGiZF
≃1þhSGiZF

¼1þ β

2Nc

X
P

htr½UPþU†
P�iZF

; ð7Þ

where Eq. (7) is an OðβÞ truncation. We thus need the
expectation value of the elementary plaquette tr½UP� in the
strong coupling ensemble ZF. The plaquette is composed
of 4 links representing gluons, which provide new pos-
sibilities to make color singlets together with ψ̄xψx�μ̂

propagating fermions. The modifications to the partition
function are computed from the product UP ¼ JijJjkJklJli
of the one-link integrals Jij ≡ R

dUUij expðψ̄Uϕ − ϕ̄U†ψÞ
around an elementary plaquette [20–22]
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FIG. 1 (color online). Left: Lattice QCD phase diagram in the
strong coupling limit, setting a=at ¼ γ2 following mean field.
Different results are obtained for different numbers Nt of time
slices Nt ¼ 2, Nt ¼ 4 [7], Nt ¼ 6, and Nt ¼ ∞ (i.e., continuous
Euclidean time) [18]. Right: Same, with corrected anisotropy [19].
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Jij ¼ −
X3
k¼1

ð3 − kÞ!
3!ðk − 1Þ! ½MψMϕ�k−1ϕ̄jψ i

þ 1

12
εii2i3εjj2j3 ψ̄ i2ϕj2 ψ̄ i3ϕj3 −

1

3
B̄ψBϕϕ̄jψ i; ð8Þ

where M and B represent mesons and baryons. The first
term describes the propagation of a (q̄g) antiquark plus
gluon together with 0 to 2 mesons, the second term
describes a (qqg), the third term is a (q̄g) together with
a baryon. From these, we compute the weight associated
with a plaquette source term in the strong coupling
configuration.
At the corners of the plaquette, the Grassmann variables

ψ ;ϕ are bound into baryons and mesons. Introducing a
variable qP ∈ f0; 1g to mark the “excited” plaquettes P
associated with the second term of Eq. (7), and correspond-
ing variables qb and qx ¼ qP for the links and the corners
of such plaquettes, we can write theOðβÞ partition function
in the same form as Eq. (3) with modified weights ŵ:

ZðβÞ ¼
X

fn;k;l;qPg

Y
x

ŵx

Y
b

ŵb

Y
l

ŵl

Y
P

ŵP ð9Þ

ŵx ¼ wxvx; ŵb ¼ wbk
qb
b ; ð10Þ

ŵl ¼ wl

Y
l

wBi
ðlÞ; ŵP ¼

�
β

2Nc

�
qP
; ð11Þ

where vx ¼ ðNc − 1Þ! if x is the corner of an excited
plaquette attached to an external meson line, Nc! if it is
attached to an external baryon line, 1 otherwise. Likewise,
the weight of each baryon loop segment l is modified by
a factor wB1

¼ 1=ðNc − 1Þ!, wB2
¼ ðNc − 1Þ!, where B1

and B2 correspond to the second and third expression in
Eq. (8). We can sample this partition function by the same
worm algorithm as for β ¼ 0, adding a Metropolis step to
update the plaquette variables qP. In practice, we found it
simpler to reweight from the β ¼ 0 ensemble.
Qualitatively new features from OðβÞ contributions

are as follows: (i) The constituent quarks of baryons and
mesons can now separate; hadrons are no longer pointlike,
but acquire a size ∼a. (ii) The baryon-baryon interaction
can now proceed by quark exchange: it is no longer limited
to the on-site Pauli exclusion principle. (iii) Chiral sym-
metry breaking becomes possible even in the dense phase
similar to nuclear matter.
Wilson loops at β ¼ 0.—Figure 2 illustrates the depend-

ence of the Polyakov loop and of the plaquette (timelike
and spacelike) on the chemical potential μ and the temper-
ature T, at β ¼ 0. The x axis represents the “distance”
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ T2

p
from the vacuum, and different symbols are

used for different values of μ=T. Several features are
noticeable. (i) The plaquette has a nonzero value caused
by the ordering effect of the fermions. Indeed, increasing

the number of quark fields from 1 to 13 triggers restoration
of the chiral symmetry [23]. (ii) The first-order phase
transition is visible at large μ=T through a discontinuity
in all Wilson loops, although it is associated with chiral
symmetry. This can be assigned to the nonzero latent heat.
(iii) Even in the regime of small μ=T, where the chiral
transition is second order, the Polyakov loop is clearly
sensitive to the transition as already found in U(3) gauge
theory [24], reflecting the “entanglement” of confinement
and chiral symmetry seen in effective models [25].
Phase diagram as a function of β.—We now show

how to obtain the derivative dðaTcÞ=dβjβ¼0 of the chiral
transition temperature aTc with respect to β. Since the
worm algorithm samples the two-point correlation function
Gðx1; x2Þ, we can measure its integral, which is equal to the
chiral susceptibility χ (there is no disconnected piece hψ̄ψi2
at mq ¼ 0 and in a finite volume, since hψ̄ψi ¼ 0 also in
the chirally broken phase),

χ ≡ hðψ̄ψÞ2i ¼ 1

L3Nt

X
x1;x2

Gðx1; x2Þ: ð12Þ

At β ¼ 0 and for some μ < μT , the critical temperature
aTcðμÞ can be obtained from finite-size scaling: the curves
χðaT; LÞL−γ=ν obtained on several lattice sizes L all
intersect at T ¼ TcðμÞ, with a slope ∝ L1=ν at the inter-
section, as illustrated Fig. 3, left. The transition is in the
3dOð2Þ universality class with known critical exponents,
which facilitates the analysis. In the region of a first-order

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0.25 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 ρ → ∞

Polyakov Loop

ρT

μ /T on 163x4

2nd: 0.00
0.10
0.20
0.31
0.42
0.55
0.68

1st: 0.84
1.03
1.26
1.56

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

0.25 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 ρ → ∞
ρT

temporal plaquette

 0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.25 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 ρ → ∞
ρ =a(T2+μ2)1/2

spatial plaquette

FIG. 2 (color online). Polyakov loop 1
3
htrLi and average spatial

and temporal plaquette 1
3
htrPsi, 13 htrPti as a function of (μ, T) on

a 163 × 4 lattice at β ¼ 0. The colors label successive values of
μ=T, and the x axis is ρ≡ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ T2

p
. At the tricritical point,

ρT ¼ 1.10ð2Þ. Wilson loops are sensitive to the chiral transition
and develop a discontinuity as the transition turns first order.
htrPsi varies oppositely to htrPti, and remains very small.
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transition, μ > μT , this ansatz is modified following
Ref. [26]. When we turn on β, the chiral susceptibility
changes and we can measure its derivative

dχ
dβ

¼ 3L3Ntðhðψ̄ψÞ2Pti − hðψ̄ψÞ2ihPtiÞ: ð13Þ

While both the temporal and the spatial plaquettes formally
enter in this expression, the latter is a factor ≳10 smaller
than the former; cf. Fig. 2. The effect of β, to linear order, is
illustrated in Fig. 3, right. At temperature aTc, the rescaled
chiral susceptibility χL−γ=ν changes by βðdχ=dβÞL−γ=ν

[19], which produces a horizontal shift of the intersection
point. At μ ¼ 0 (on Nt ¼ 4 lattices), aTcjβ¼0 ¼
1.4021ð7Þ, ðd=dβÞaTcðβÞjβ¼0 ¼ −0.46ð1Þ.
We find that aTc decreases as β increases: this is

expected since a decreases. Our result agrees rather well
with mean-field predictions [27,28]; see Fig. 4. More
importantly, we can compare with the finite-β Hybrid
Monte Carlo simulations at μ ¼ 0 (which are sign-problem
free) performed on Nt ¼ 2 and Nt ¼ 4 [29–31] lattices
with isotropic actions (i.e., aT ¼ 1=2 and 1=4) and
extrapolated to zero quark mass. These data points are

marked in black in Fig. 4. We have also computed
aTcðμ ¼ 0Þ ourselves, using HMC on anisotropic lattices.
As Fig. 4 left shows, ourOðβÞ determination of aTcðμ¼0Þ
agrees perfectly with the linear approximation to the HMC
determination. But the latter shows significant curvature.
To better approximate the exact result, we perform an
empirical, exponential extrapolation aTcðμ ¼ 0; βÞ=aTc
ðμ ¼ 0; β ¼ 0Þ ≈ expðβðd=dβÞaTcjβ¼0Þ. As seen in
Fig. 4 right, it turns out that this approximation, which
includes a resummation of higher-order β contributions,
follows the exact HMC result up to β ∼ 5 (or a ∼ 0.3 fm),
where the lattice theory is much closer to continuum
physics. We have applied the same procedure to determine
aTcðβÞ at nonzero chemical potential. dðaTcÞ=dβ is clearly
not as large as when μ ¼ 0. In fact, dðaTcÞ=dβ becomes
consistent with zero as μ approaches μT . The tricritical
point and the first order line seem to only weakly depend
on β. Thus, Tcðμ ¼ 0Þ=μcðT ¼ 0Þ decreases at OðβÞ
towards its continuum value.
The resulting phase diagram is illustrated Fig. 5 for

β ¼ 0.5, 1.0, and 1.5. We show the phase boundary
obtained by linear reweighting, based on Eq. (7), and that
obtained by exponential extrapolation, which works so well
at μ ¼ 0. In both cases, the phase boundary becomes more
“rectangular” at weaker coupling: the second-order tran-
sition line becomes “flatter” (less μ dependent), and the
first-order transition line remains almost “vertical,” leaving
the tricritical point at the “corner of the rectangle.” From
the chiral susceptibility, no clear shift of ðaμT; aTTÞ ¼
(0.65ð2Þ; 0.91ð5Þ) could be detected; however, from the
baryon density nB [19], we have evidence that the critical
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end point of the nuclear transition, which coincides with the
chiral transition at β ¼ 0, moves along the first order line,
to smaller values of T. This is expected: as β increases,
the lattice spacing a shrinks, and (aMB) also, where MB is
the baryon mass. If (aμc) stays approximately constant as
we observe, then the nuclear attraction responsible for the
difference ½MB − 3μcðT ¼ 0Þ�, of about 300 MeV when
β ¼ 0 [7], becomes weaker. The weakening of the asso-
ciated first-order transition brings the nuclear critical end
point down in temperature.
We plan to study Oðβ2Þ corrections next.
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