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We study theoretically and numerically the entanglement entropy of the d-dimensional free fermions
whose one-body Hamiltonian is the Anderson model. Using the basic facts of the exponential Anderson
localization, we show first that the disorder averaged entanglement entropy hSΛi of the d dimension cube Λ
of side length l admits the area law scaling hSΛi ∼ lðd−1Þ; l ≫ 1, even in the gapless case, thereby
manifesting the area law in the mean for our model. For d ¼ 1 and l ≫ 1we obtain then asymptotic bounds
for the entanglement entropy of typical realizations of disorder and use them to show that the entanglement
entropy is not self-averaging, i.e., has nonvanishing random fluctuations even if l ≫ 1.
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Entanglement is a basic ingredient of the quantum
description, having a great potential for applications [1].
An important quantifier of entanglement is the von
Neumann entropy. In the bipartite setting, where the system
is the union of a subsystem and its environment of the
characteristic lengths l and L, the entropy of the reduced
density matrix of the subsystem (entanglement or block
entropy) may have an unusual asymptotic behavior as a
function of l; 1 ≪ l ≪ L, if the whole system is in its
ground state. Namely, it was shown in a number of works
that the entanglement entropy is proportional to the surface
area ld−1 of the subsystem but not to its volume ld. The
latter (extensive) length scaling is standard in quantum
statistical mechanics for nonzero temperature (thermal
entanglement), while the former was found first in cosmol-
ogy and then in other fields and is known as the area
law. Moreover, the area law is not always valid, e.g., at
quantum critical points of several one-dimensional
(1D) translation invariant quantum spin chains, where the
entropy is proportional to log l; l ≫ 1. It is also believed and
found for simple translation invariant models that a
multidimensional analog of the above divergence is
ld−1 log l [2,3].
More generally, the area law scaling ld−1 is to be valid for

quantum systems with finite range interaction and a
spectrum gap, while for gapless systems other scalings
are possible, ld−1 log l in particular, which is closely related
to the existence of a quantum phase transition in the
corresponding system [2]. This is, however, not simple
to prove, even in the translation invariant case, since the
spectrum of many-body quantum systems is rather complex
even for 1D exactly solvable models. On the other hand,
there is a simpler model having both spectrum types and
both scalings. This is the model of quasifree fermions
described by the Hamiltonian quadratic in the creation
and annihilation operators. For this Hamiltonian with finite
range and translation invariant coefficients the large-l
scaling of the entanglement entropy for any d ≥ 1 was

established first via the upper and lower bounds and
certain conjectures on the subleading term in the Szegö
theorem for Toeplitz determinants [3] and then rigor-
ously [4].
Following a standard paradigm of condensed matter

theory, it is natural to consider a disordered version of the
model, replacing the translation invariant coefficients of the
fermionic Hamiltonian with random coefficients, which are
translation invariant in the mean and have fast decaying
spatial correlations [5].
The analysis of quadratic fermionic forms reduces to that

of a certain one-body Hamiltonian. Hence, in the case of
random coefficients we obtain a problem of the theory of
one-body disordered systems, which, however, proves to be
quite nontrivial in general. Thus, to demonstrate the role of
disorder in the asymptotic behavior of the entanglement
entropy without involving too many technicalities it is
natural to use a simple but nontrivial setting and to ask
simpler questions, e.g., about the upper and lower bounds
for the disorder averaged entanglement entropy implying
its scaling (see Ref. [3] for an analogous approach in the
translation invariant case), the same for the entanglement
entropy of typical realizations of disorder, and/or about
the self-averaging property of the entropy. Recall that a
number of important characteristics of disordered system
(free energy, magnetization, density of states, conductivity,
etc.) possess this property, i.e., become nonrandom in the
macroscopic limit [5]. This allows one to deal only with the
disorder averaged characteristics, but not with their whole
probability distributions.
We will show in this Letter that, for the free fermions in

the random external field, (i) for any d ≥ 1 the averaged
entanglement entropy possesses the area law scaling ld−1,
(ii) for d ¼ 1 the same in true for all typical realizations
of disorder, and (iii) the entropy is not self-averaging
for d ¼ 1.
Model.—We consider the system of N lattice spinless

fermions with the parity conserving Hamiltonian
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H ¼
XN
j;k¼1

Ajkc
þ
j ck; ð1Þ

where cþj ; cj; j ¼ 1;…; N are the Fermi operators and
A ¼ fAjkg is a Hermitian N × N matrix.
By using the Bogolyubov transformation it is easy to

find that if K ¼ fhcþj ckiGgNj;k¼1, where h� � �iG is the
“Gibbs” averaging with the “density” matrix

ρ ¼ e−H=Z; Z ¼ Tre−H=Z; ð2Þ

then

K ¼ ð1þ eAÞ−1; A ¼ − logKð1 − KÞ−1; ð3Þ

S ¼ −Trρlog2ρ ¼ trhðKÞ; ð4Þ

hðxÞ ¼ −xlog2x − ð1 − xÞlog2ð1 − xÞ; ð5Þ

where Tr and tr denote the trace in the 2N-dimensional
space of N fermions and in the N-dimensional one-body
configuration space, respectively.
We choose A ¼ ðH − μÞ=T where H ¼ H0 þ V is the

Anderson model, in which H0 ¼ aΔ, a is the hopping
parameter, Δ is the discrete Laplacian, V ¼ fVjgj∈Ω is the
random potential, μ is the Fermi energy, and T is the
temperature. Then Eq. (3) implies

P ¼ fPjkgj;k∈Ω ¼ KjT¼0 ¼ θðμ −HÞ; ð6Þ

where θ is the Heaviside function. Thus,P is the orthogonal
projection on the ground state of the whole system; the
Slater determinant on the first n eigenstates of H, where
n=jΩj ¼ NðμÞ and NðμÞ is the integrated density of states
of H. Hence the entropy (4) of the whole system is zero.
Consider now a subsystem of fermions in a subcube

Λ of Ω; the latter can be the whole Zd. We assume that Λ
is centered at the origin and of side length l ¼ 2mþ 1.
Note that the setting is not unambiguous for indistin-
guishable particles and we use its natural version known
as the entanglement of modes [6]. Then the corresponding
reduced density matrix is ρΛ ¼ e−HΛ=ZΛ, where HΛ is the
entanglement Hamiltonian [2] given by Eq. (1) with
A ¼ − logPΛð1 − PΛÞ−1 and [see Eqs. (6) and (4)]

SΛ ¼ −TrρΛlog2ρΛ ¼ trhðPΛÞ; PΛ ¼ fPjkgj;k∈Λ:
ð7Þ

The area law scaling for the disorder averaged entan-
glement entropy.—We will show now that if the spectrum
of H below μ is localized, then the disorder average hSΛi
scales as ld−1 for l ≫ 1. To this end, we present upper
and lower bounds for hSΛi, which are asymptotically
proportional to ld−1.

We start from bounds for h of Eq. (4) [2],

φðxÞ ≤ hðxÞ ≤
ffiffiffiffiffiffiffiffiffiffi
φðxÞ

p
; φðxÞ ¼ 4xð1 − xÞ: ð8Þ

The bounds and Eq. (7) imply

LΛ ≤ SΛ ≤ UΛ; LΛ ¼ 4trΓΛ;

UΛ ¼ 2tr
ffiffiffiffiffiffi
ΓΛ

p
; ΓΛ ¼ KΛð1Λ − KΛÞ: ð9Þ

We use the equality
P

k∈Zd jPjkj2 ¼ Pjj, valid for any
orthogonal projection, to write

LΛ ¼ 4
X
j∈Λ

X
k∈Λ̄

jPjkj2; ð10Þ

where Λ̄ is the exterior of Λ.
Note that in the 1D translation invariant case Pjk ¼

sin κðj − kÞ=πðj − kÞ, where κ is the Fermi momentum,
and Eq. (13) yields LΛ ≃ 4π−2 log l; l ≫ 1. This is a simple
example of the log scaling in the translation invariant case.
A more involved argument leads to the lower bound
∼ld−1 log l for any d ≥ 1 [3] and to the corresponding
asymptotic formula [4].
Assume that the potential is independent and identically

distributed (IID) in different points. Then hjPjkj2i ¼ Πj−k,
where Πj ¼ Π−j and is symmetric in the coordinates
ðj1;…; jdÞ, and Eq. (10) implies

hLΛi ¼ 4
X
j∈Λ

X
k∈Λ̄

Πj−k: ð11Þ

It is easy to find that Πj−k is the integral over
Δ × Δ; Δ ¼ ð−∞; μÞ, of the current-current correlator
h(δðH − E1Þ)jk(δðH − E2Þ)jki determining the ac conduc-
tivity of free disordered fermions [7].
Note that we write here and below al ≃ bl if bl is the

leading term of al for l ≫ 1 and al ≲ bl if al ≤ bl,
cl ≃ bl.
We will use now a basic rigorous result of the locali-

zation of states of the d-dimensional Anderson model,
according to which if the probability distribution of the IID
random potential is smooth enough and either μ is close
enough to the bottom of the spectrum or the hopping
parameter is small enough, then hjPjkji ≤ Ce−γjj−kj for
some C < ∞ and γ > 0 (see, e.g., Ref. [8]). This and the
inequality jPjkj ≤ 1 valid for any orthogonal projection
imply

Πj ≤ Ce−γjjj: ð12Þ

The sum over k in Eq. (11) consists of 2d − 1 sums such
that (dδ), δ ¼ 1;…; d of them have the coordinates
ka1 ;…; kαδ outside the interval ½−m;m� and the rest
inside the interval. Since the summands of Eq. (11) are
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non-negative, hLΛi is bounded below by the sums with
δ ¼ 1 (in fact, the leading term of hLΛi for l ≫ 1) and then
Eq. (12) yields that up to exponential small in l terms

hLΛi≥ 4d
X
j∈Λ

X
jk1j>m

Πð1Þ
jj1−k1j≃c−ld−1;

c−¼ 8d
X
t≥1

tΠð1Þ
t ; Πð1Þ

t ¼
X

j2;…;jd∈Zd−1

Πt;j2;…;jd : ð13Þ

For the upper bound UΛ of Eq. (9) we will use the
inequality TrfðMÞ ≤ P

n
j¼1 fðMjjÞ valid for any n × n

Hermitian M and a concave f. The inequality is a version
of the Peierls variation principle [9] with the only difference
being that it is usually formulated for convex f, e−x in
particular, thus with the opposite inequality.
We use the inequality with M ¼ ΓΛ of Eq. (9) and

fðxÞ ¼ ffiffiffi
x

p
to obtain [cf. Eq. (10)]

UΛ ≤ 2
X
j∈Λ

�X
k∈Λ̄

jPjkj2
�

1=2
ð14Þ

and then the Schwarz inequality hξ1=2i ≤ hξi1=2 and
Eq. (12) [cf. Eq. (11)] to obtain

hUΛi ≤
X
j∈Λ

�X
k∈Λ̄

Πk−j

�
1=2

< ∞: ð15Þ

Since Πjk ≥ 0, the sum over k ¼ ðk1; k2;…; kdÞ ∈ Λ̄ is not
less than ð2d − 1Þ times the sum over jk1j > l and
ðk2;…; kdÞ ∈ Zd−1. This and the elementary inequalityffiffiffiffiffiffiffiffiffiffiffiffi
aþ b

p
≤

ffiffiffi
a

p þ ffiffiffi
b

p
yield up to exponential small in l

terms [cf. Eq. (13)]

hUΛi≲ cþld−1; cþ ¼ 4ð2d − 1Þ
X∞
j¼0

�X∞
k¼1

Πð1Þ
kþj

�
1=2

:

ð16Þ

Note that c� of Eqs. (13) and (16) are finite in view of
Eq. (12). This and Eq. (9) prove the validity of the area law
scaling hSΛi ∼ ld−1 for the averaged entanglement entropy
of free disordered fermions. For similar results on disor-
dered oscillators see Ref. [10].
Bounds for the 1D entanglement entropy on typical

realizations of disorder.—We will write Ll and Ul for LΛ
and UΛ and Λ ¼ ½−m;m� and l ¼ 2mþ 1. We have

Ll ¼ 4
X
jjj≤m

X
jkj>m

jPjkj2 ¼ Lþ
l þ L−

l ;

Lþ
l ¼ 4

X
jjj≤m

X
k>m

jPjkj2; L−
l ¼ 4

X
jjj≤m

X
k<−m

jPjkj2; ð17Þ

thus,

L�
l ¼ L�

l þ R�
l ; L�

l ¼ 4
X∓∞

j¼�m

X�∞

k¼�ðmþ1Þ
jPjkj2;

R�
l ¼ 4

X∓∞

j¼∓ðmþ1Þ

X�∞

k¼�ðmþ1Þ
jPjkj2: ð18Þ

According to Eq. (12), hR�
l i ≤ C1e−γ1l where C1 < ∞ and

γ1 > 0. This, the Chebyshev inequality, and the Borel-
Cantelli lemma [11] imply thatRþ

l vanisheswith probability
1 (i.e., for any typical realizations) as l → ∞, i.e.,
Lþ
l ≃ Lþ

l ; l ≫ 1, with probability 1. Introduce the shift
operator T: ðTVÞj ¼ Vjþ1. Writing the Anderson
Hamiltonian as HðVÞ to make explicit its dependence on
V, we find that HjkðTaVÞ ¼ Hjþa;kþaðVÞ. This and Eq. (6)
imply the same for fPjkgj;k∈Z; thus, Lþ

mðVÞ ¼ Lþ
0 ðTlVÞ.

The terms of the series in Eq. (18) for Lþ
0 are non-negative

random functions; thus, the series is convergent with a
probability 1 if the series of its averages is convergent. This
is again guarantied by Eq. (12). Thus,Lþ

0 of Eq. (18) is well
defined and we have Lþ

l ≃ Lþ
0 ðTmVÞ; l ≫ 1, with proba-

bility 1. Likewise L−
l ≃ L−

0 ðT−mVÞ; l ≫ 1, and

Ll ≃ Lþ
0 ðTmVÞ þ L−

0 ðT−mVÞ; l ≫ 1; ð19Þ
with the same probability.
A similar argument yields [cf. Eq. (19)]

Ul ≲ Uþ
0 ðTmVÞ þ U−

0 ðT−mVÞ; l ≫ 1;

U�
0 ðVÞ ¼ 23=2

X∓∞

j¼0

�X�∞

k¼�1

jPk;jj2
�

1=2
: ð20Þ

Figure 1 presents our numerical results on the probability
distributions pLðxÞ and pUðxÞ of the lower [Eq. (19)] and

FIG. 1 (color online). The probability distributions pUðxÞ and
pLðxÞ of the lower (19) and upper (20) bounds obtained from
numerical data on 15 000 realizations of disorder. The hopping
parameter a of the Anderson model is 1=10, the potential is
uniformly distributed over ½−1; 1�, μ ¼ −0.25, the system size
L ¼ 30 000, and the subsystem size l ¼ 1500.
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upper [Eq. (20)] bounds; the latter is with the optimal
exponent log2 instead of 1=2 [see item (i) in the next
section]. It is important that pL and pU are nonzero on
practically the same intervals. This implies that the entan-
glement entropy Sl depends nontrivially on the realizations
of disorder even if l ≫ 1; i.e., Sl is not self-averaging.
Indeed, if it were self-averaging, i.e., Sl ≃ S; l ≫ 1, for a
nonrandom S, then the whole interval where the probability
density pU of the upper bound (20) is nonzero would lie on
the right of S, while the whole interval where the proba-
bility density pL of the lower bound (19) is not zero would
lie on the left of S. Thus, these two probability densities
would not overlap.
Besides, it follows from the analysis of numerically

obtained probability distributions of Ul and Ll with
growing l that they become independent of l (saturate)
for l ≫ 1. This can be explained as follows. Since the
random potential is independent in different points, the
first two terms of the right-hand sides of Eqs. (19) and (20)
have to also be statistically independent for l ≫ 1, and since
the potential is translation and reflection symmetric in the
mean, the probability distributions of these terms are
independent of m and identical. Hence, for l ≫ 1 the
probability distributions pL and pU of Eqs. (19) and (20)
are the convolutions of l-independent probability distribu-
tions of L�

0 and U�
0 and this was also checked numerically.

It is worth mentioning that our numerical results do not
allow us to conclude that the probability distribution of the
entanglement entropy Sl; l ≫ 1, is concentrated on a finite
interval, hence that the random function Sl is bounded by a
nonrandom constant for l ≫ 1 on the typical realizations of
disorder. In fact, this seems unlikely. Rather, one has to
expect that for every typical realization of disorder there
exists an infinite sequence flng of values of l such that
Sln → ∞ as n → ∞. However, these would be just rather
rare peaks of randomly fluctuating entanglement entropy
(7) but not its “regular” asymptotics.
Remarks.—(i) The bound

ffiffiffi
φ

p
in Eq. (8) can be replaced

by a tighter one φα; α ¼ log 2. (ii) Analogous results are
valid for the Rényi entropy Rα ¼ ð1 − αÞ−1Trlog2ραΛ,
reducing to the von Neumann entropy (7) for α ¼ 1.
(iii) The above results are based on Eq. (12) manifesting
the localization for the corresponding one-body problem.
It follows from Ref. [12] that an analogous bound holds
for the 1D Schrödinger operator with certain incommen-
surate potentials. Thus, the entanglement entropy of 1D free
fermions in the corresponding external fields is also
bounded. (iv) We have discussed the area law for the
Fermi energy lying in the localized spectrum of the
Anderson model. The case where the Fermi energy is in a
gap is much simpler. Here an analog of Eq. (12) can be
obtained by writing Eq. (6) as the contour integral of the
exponentially decaying Green’s function. (v) One can ask
about the asymptotics of the entanglement entropy for
nonzero temperature (thermal entanglement). In this case

the leading term of the entropy is proportional to ld with a
nonrandom coefficient and there are certain random or
incommensurate subleading terms of various scaling (a
stochastic analog of the Szegö theorem [13]).
Conclusion.—We have shown that for the free fermions

in the random external field the averaged entanglement
entropy of the d ≥ 1 dimension cube of side length l is
bounded from above and from below by c�ld−1. The result
suggests the validity of the area law “in the mean” even in
the gapless case for disordered free fermions. This has to be
compared with the results for the translation invariant case,
where the entropy scales as ld−1 log l , and with those of a
series of works (see Ref. [14] for a review) in which, by
using a strong disorder version of the real space renorm-
alization group, it was found that the averaged entropy at
critical points of certain disordered spin chains scales as in
the nonrandom case, although with a different prefactor
of log l. This could be an indication of the difference of the
origin of the area law for disordered spin chains and
disordered free fermions where there is no interaction
and a nontrivial entanglement is due to a pure “kinematic”
effect of Fermi statistics, hence simple formulas (3)–(5).
We have also obtained bounds for the d ¼ 1 entangle-

ment entropy of all typical realizations of disorder. The
bounds do not imply in general that the entropy of typical
realizations is bounded for l ≫ 1 “uniformly” in realiza-
tions, i.e., by a nonrandom constant. However, we show
numerically that the bounds have a nontrivial l-independent
for l ≫ 1 and overlapping probability distributions (see
Fig. 1) manifesting that the entanglement entropy is not
self-averaging, i.e., has nonvanishing random fluctuations
for l ≫ 1.
Our results can be viewed as an indication of an

important role of disorder in the entanglement in extended
systems, similarly to its role in condensed matter
(Anderson localization) and phase transitions (rounding
effects). This seems to be especially interesting in the
dimension 1, where the Anderson localization is the case
for arbitrary small disorder and all energies [5]. The results
can also be used in the elaboration of the density
matrix renormalization group method [2,6] for disordered
systems.
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