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Because of conservation of energy we cannot directly turn a quantum system with a definite energy into
a superposition of different energies. However, if we have access to an additional resource in terms of a
system with a high degree of coherence, as for standard models of laser light, we can overcome this
limitation. The question is to what extent coherence gets degraded when utilized. Here it is shown that
coherence can be turned into a catalyst, meaning that we can use it repeatedly without ever diminishing its
power to enable coherent operations. This finding stands in contrast to the degradation of other quantum
resources and has direct consequences for quantum thermodynamics, as it shows that latent energy that may
be locked into superpositions of energy eigenstates can be released catalytically.
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Introduction.—Coherence is a resource that enables us to
implement coherent operations on quantum systems, a
canonical example being the use of lasers to put atoms in
superposition between two energy levels [1], or analogously
for radio fields and nuclear spins [2]. When we excite an
atom we need another system, an “energy reservoir,” where
the energy is taken. What kind of energy reservoir would we
need in order to put an atom in superposition between two
energies? With a bit of thought one can realize that this is
impossible if the atom and the reservoir initially have
definite energies. (See [3], Sec. I, for details. This obser-
vation can be understood in the wider context of “reference
frames” and symmetry preserving operations [52–54].) One
way to resolve the apparent contradiction with the above
claim, that such superpositions indeed can be generated, is to
realize that this usually is achieved via, e.g., lasers or radio
fields. These are often modeled as coherent states, typically
described as superpositions of the energy eigenstates of the
electromagnetic field [1,55,56] (although this can be
debated; see, e.g., [57–62]). In other words, the coherence
of the laser is a resource that enables us to put the atom in
superposition or, more generally, to perform operations that
coherently mix energies.
The main result of this investigation is that coherence can

be turned into a catalyst, in the sense that it enables
otherwise impossible tasks, without itself being consumed.
Although maybe reminiscent of entanglement catalysis
[63], this stands in contrast to other quantum resources,
e.g., reference frames for measurements, which appear to
degrade upon use [52,64–66]. We establish catalytic coher-
ence within two models. The first model (the doubly infinite
energy ladder) is convenient to analyze but is somewhat
unphysical in that its Hamiltonian has no ground state. The
second model (the half-infinite ladder) amends this prob-
lem. We furthermore numerically investigate remnants of
catalytic coherence in the Jaynes-Cummings (JC) model
[67,68]. Finally, we apply catalytic coherence to “work
extraction” in the context of quantum thermodynamics.

The doubly-infinite energy ladder.—Catalytic coherence
is achieved via a specific design of the interaction between
the system and the energy reservoir. While this construction
can be used to generate general coherent operations on
N-level systems (see [3], Sec. II) here we focus on two-
level systems. Let S be a system for which the Hamiltonian
HS has eigenvalues h0 ¼ 0 and h1 ¼ s > 0, corresponding
to the eigenstates jψ0i and jψ1i. The Hamiltonian of the
reservoir E is HE ¼ s

P
j∈Zjjjihjj, where s is the energy

spacing in the ladder, fjjigj∈Z is an orthonormal basis, and
Z denotes the set of integers. Regarded as a Hamiltonian,
HE is slightly odd in that it does not have any ground state.
We shall remedy this problem shortly, but due to several
convenient properties we use this model for the initial
analysis. As a first step we define the “shift operator”
Δ ¼ P

j∈Zjjþ 1ihjj. As one can see, this unitary operator
translates every state "rigidly" along the energy ladder (see
Fig. 1). With the aid of Δ we define the following family of
unitary operators on HS ⊗ HE:

VðUÞ¼
X

n;n0¼0;1

jψnihψnjUjψn0 ihψn0 j⊗Δn0−n

¼
X

j∈Z
VjðUÞ;

VjðUÞ¼
X

n;n0¼0;1

jψnihψnjQjψn0 ihψn0 j⊗ jj−nihj−n0j; ð1Þ

where U is an arbitrary unitary operator on HS. (This type
of interaction has previously been considered in quantum
thermodynamics [69].) By construction, all VðUÞ commute
with HS þHE; i.e., they are energy conserving. Further-
more, they commute with all Δa and thus act uniformly
over the energy ladder (see [69] for discussions on this).
The family of all VðUÞ serves as the set of “allowed
operations” in our model. In the following we investigate
what kind of transformations we can implement on S and
how this depends on the coherence in the reservoir E.
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Coherence and coherent operations.—Given a state σ on
the reservoir we can implement channels on S via

Φσ;UðρÞ ¼ TrE½VðUÞρ ⊗ σVðUÞ†�: ð2Þ
(This generally requires time control; see [3], Sec. II C.) We
let CðσÞ denote the set of channelsΦσ;U that can be obtained
for arbitrary unitaryU, given σ. Let us now see what aspects
of σ it is that determine Φσ;U. If one inserts Eq. (1) into (2),
it turns out that Φσ;U, and thus CðσÞ, depends on σ only
via expectation values of the form TrðΔaσÞ for a ∈ Z
(which do not determine σ uniquely).
Next, suppose we wish to perform a unitary operation

that mixes different energy levels. From Eqs. (1) and (2)
one can see that if TrðΔaσÞ ≈ 1 for a ¼ −2;…; 2, then
Φσ;UðρÞ ≈UρU†. (For general N-level systems, the neces-
sary range of a is determined by the amount of energy that
the reservoir would need to donate or absorb.) Hence, when
we speak of a “high degree of coherence,” this means that
the state σ of the reservoir is such that TrðΔaσÞ ≈ 1 for a
broad range of a, with the rationale that this allows us to
perform coherent operations to a good approximation.
A concrete example is the family of states σ ¼

jηL;l0ihηL;l0 j of the form jηL;l0i ¼
P

L−1
l¼0 jl0 þ li= ffiffiffiffi

L
p

, i.e.,
uniform superpositions over a collection of consecutive
energy eigenstates. In the limit of large L, the channel
ΦjηL;l0 ihηL;l0 j;U converges to the unitary operation ρ ↦ UρU†

(as one could expect from theWigner-Arkai-Yanase theorem
[70–87]). Hence, this model is powerful enough to imple-
ment all unitary operations on S, given a sufficient degree of
coherence in the reservoir. Next we show that the degree of
coherence does not change over repeated applications.
Catalytic coherence in the doubly infinite ladder.—To

investigate the catalytic properties of the coherence, we

need to determine how the state of the energy reservoir
changes when we use it. For that purpose we define the
corresponding channel on E,

Λρ;UðσÞ ¼ TrS½VðUÞρ ⊗ σVðUÞ†�: ð3Þ
By using Eq. (1) one can confirm that

Tr½ΔaΛρ;UðσÞ� ¼ TrðΔaσÞ; ð4Þ

for all σ, ρ, U, and a. In other words, the expectation values
hΔai ¼ TrðΔaσÞ are invariants under the action of these
operations.
Earlier we noted that it is precisely the expectation values

hΔai that determine which channels can be implemented.
Hence, if we use the reservoir a second time, we can
implement the very same channels that we implemented
the first time, i.e., ΦΛðσÞ;U ¼ Φσ;U, and hence C(Λρ;UðσÞ) ¼
CðσÞ. In other words, we do not degrade the coherence
resource in the reservoir by using it. In this sense, coherence
is catalytic in this model. One can also prove a stronger type
of catalytic property,which does not assume that the reservoir
and the systems initially are uncorrelated; see [3], Sec. II.
(See also [3], Sec. III, for a reformulation of catalytic
coherence in terms of correlations with a reference system.)
Note that the catalytic property holds for all states σ on the

reservoir and is not limited to states with a high degree of
coherence. It should also be emphasized that although hΔai
are invariants, the underlying state does change (see [3],
Sec. II, for an example), which is in contrast to entanglement
catalysis [63]. In other words, analogously to how measure-
ments induce back-action on reference frames [88–90], there
is indeed a back-action on the energy reservoir. However, as
opposed to how certain reference frames appear to degrade
due to back-action [52,64–66], this change of state does not
affect the usefulness of the coherence in the reservoir.
The half-infinite ladder.—One might worry that the

catalytic property is an anomaly related to the lack of
ground state, as a broadening distribution otherwise would
hit the bottom. In the following we show that the capacity to
induce channels can be maintained indefinitely also in a
model that has a proper ground state. To this end, we cut
away the lower half of the doubly infinite ladder and thus
obtain (the spectrum of) the harmonic oscillator Hþ

E ¼
s
Pþ∞

j¼0 jjjihjj. We define a new class of unitary operations
on S and E as

VþðUÞ ¼ jψ0ihψ0j ⊗ j0ih0j þ
Xþ∞

l¼1

VlðUÞ; ð5Þ
with Vl as in Eq. (1). By comparison one can see that VðUÞ
and VþðUÞ act identically on all states with at least one
quantum, i.e., hljσjli ¼ 0 for l ¼ 0. (For a general S this
“border zone” would be larger; see [3], Sec. IV.)
Protocol for a catalytic half-infinite ladder.—A simple

protocol can maintain the coherence properties of the
reservoir indefinitely (see Fig. 2). We assume an initial
state σin such that hljσinjli ¼ 0 for l ¼ 0, 1; i.e., it contains

FIG. 1 (color online). Rigid translation property. A two-level
system interacts with a reservoir whose energy levels can be
described as a ladder. By design, the interaction shifts the whole
state of the reservoir “rigidly” down or up along this ladder,
depending on whether the two-level system absorbs (left part) or
donates (right part) energy. For example, by removal of one
quantum, the uniform superposition jηL;l0i ¼

P
L−1
l¼0 jl0 þ li= ffiffiffiffi

L
p

is shifted to jηL;l0−1i. If L is large, the difference between jηL;l0−1i
and jηL;l0i is small. Hence, the state of the reservoir does not
change much by the loss or gain of a quantum, which enables
coherent operations on the two-level system. In the limit of large
L, these implementations can be made perfect. This is analogous
to how coherent states on a bosonic mode can implement
coherent operations on an atom via the Jaynes-Cummings model.
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at least two quanta. We let E and S interact via some
arbitrary choice of unitary VþðUÞ. As we know from the
above reasoning, the effect is identical to VðUÞ. The new
state σ̄ on the energy reservoir is such that hljσ̄jli ¼ 0 for
l ¼ 0. Now, consider an ancillary two-level system A, with
the two eigenstates ja0i and ja1i corresponding to the
energies 0 and s, respectively. We assume that A initially is
in the excited state ja1i. By applying the operation VþðUAÞ
for UA ¼ ja0iha1j þ ja1iha0j, the state σ̄ is translated one
rung up along the ladder to a new state σout. Hence, the
reservoir is again in a state with at least two quanta. Since
these operations have all been performed on states safely
away from the ground state, it follows that CðσoutÞ ¼
CðσinÞ. By iterating this procedure we can conclude that
the set of channels that this reservoir can induce is kept
intact indefinitely.
Decay of coherence in the Jaynes-Cummings model.—

For many theoretical purposes it is enough to know that
coherence, in principle, can be made catalytic. It is
nevertheless relevant to ask to what extent these phenom-
ena exist in more general types of systems, especially if one
considers experimental investigations. Interactions between
a two-level atom and a single mode of the electromagnetic
field are often modeled via the JC Hamiltonian HJC ¼
gσþ ⊗ aþ gσ− ⊗ a† [67,68]. Here a; a† are the standard
bosonic annihilation and creation operators ½a; a†� ¼ 1̂E,
and σþ ¼ jψ1ihψ0j, σ− ¼ jψ0ihψ1j. Similar to our
designed interactions, the JC model also moves a quantum

of energy between the atom and the reservoir (as in Fig. 1),
but it does not act uniformly over the energy ladder. One
can nevertheless find a “shadow” of catalytic coherence in
the JC model. The graphs in Fig. 3 suggest that the capacity
to repeatedly induce coherent operations decays slower for
higher initial average energies, even if the “width” of the
initial superposition is fixed (see [3], Sec. V, for details).
Application: Coherence in expected work extraction.—

Work extraction and the closely related concepts of infor-
mation erasure and Maxwell’s demon have a long history
(see, e.g., [91–100]) with recently renewed interests, e.g., in
the contexts of resource theories [101–104] and single-shot
statistical mechanics [105–112]. The task is to extract as
much useful energy as possible by equilibrating a system
with Hamiltonian HS and state ρ with respect to a heat bath
of temperature T. Here we consider the question of how
much work can be extracted in an average sense. Standard
results [93,97,98,113] suggest that the expected work
content of a system is characterized by

A‘standard’ðρ; HSÞ ¼ kTD(ρ∥GðHSÞ); ð6Þ
where Dðρ∥ηÞ ¼ Trðρ ln ρÞ − Trðρ ln ηÞ is the relative von
Neumann entropy, k is Boltzmann’s constant, GðHSÞ ¼
expð−βHSÞ=ZðHSÞ, ZðHSÞ ¼ Tr expð−βHSÞ, and β ¼
1=ðkTÞ. [Equation (6) can be confirmed in a model without
an explicit energy reservoir; see [3], Sec. VI.]

FIG. 2 (color online). Regenerative catalytic cycles. When the
energy reservoir interacts with the two-level system (left part) the
projection of its state onto the number states can increase with at
most one level up and down in energy. As long as the projection
onto the ground state of the reservoir remains zero, the set of
channels that the reservoir can induce on the system stays intact
from one interaction to the next. By using another two-level
system in a pure excited state (right part) to inject energy into the
reservoir, the state is translated “rigidly” up along the energy
ladder by one step. By alternating every use of the reservoir with
such a pumping, the state of the reservoir can be kept away from
the ground state, thus maintaining the coherence properties
indefinitely. Note that the state of the energy reservoir does
change from one cycle to the next; e.g., the range of number states
onto which it projects may become broader for each step.
However, the relevant aspects of the state, which determine its
capacity to induce channels, remain constant.
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FIG. 3 (color online). Decay of coherence in the Jaynes-
Cummings model. The JC model exhibits a decay of coherence
over repeated use. However, there is a remnant of the catalytic
property, in the sense that the “lifetime” of the coherence (counted
in number of iterations) appears to increase indefinitely merely by
an increase of the average energy of the initial state. These graphs
depict the decay of the fidelity by which the superposition jϕi ¼
ðjψ0i − ijψ1iÞ=

ffiffiffi
2

p
can be created from the ground state jψ0i, in a

collection of two-level systems that sequentially interact with one
single reservoir, according to the JC model for a fixed time step.
Each curve corresponds to a different initial state of the reservoir
and shows FðmÞ

k ¼ hϕjΦðσðkÞm Þjϕi, against the number of times k
the reservoir has been used. Each curve corresponds to an initial
state σð0Þm ¼ jηL;l0ðmÞihηL;l0ðmÞj for jηL;l0ðmÞi with l0ðmÞ ¼
ð4mþ 1Þ2 − 24 and L ¼ 50, for m ¼ 5, 7, 9, 11, 14, 18, 24,
31, 40, 52, 67, 87, 113, 147, 191. Note that the width of the
superposition does not change withm. The dotted line is the value
of ð1þ jhηL;l0ðmÞjΔjηL;l0ðmÞijÞ=2 ¼ 0.99, which would be the
fidelity reached in the doubly infinite ladder model for these
initial states.
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However, in light of the above considerations, such
approaches appear to implicitly assume access to ideal
coherence resources. Recently it has been shown [69] that
without any coherence, the optimal expected work content
is not characterized by (6), but rather by

Adiagonalðρ; HSÞ ¼ kTD(½ρ�HS
∥GðHSÞ); ð7Þ

where ½ρ�HS
¼ P

lPlρPl, and Pl are the projectors onto the
eigenspaces of HS. However, one can show (see [3],
Sec. VII) that access to coherence increases the amount
of work that can be extracted. Furthermore, in the limit of a
large degree of coherence (e.g., large L for jηL;l0i), one
regains Eq. (6). We can conclude that coherence sails up as
an important resource alongside the expected work content.
The question is how they relate. How much of one resource
can be gained by spending the other? The fact that here we
perform the work-extraction analysis entirely within the
doubly infinite ladder model implies that we only use the
coherence catalytically and do not “spend” it at all.
In relation to this thermodynamic application one may

note Ref. [114], where optimal extraction is obtained
irrespective of the state of the reservoir, via a larger class
of unitary operations that only conserve energy on average,
and has the power to create and destroy superpositions of
energy eigenstates (see [3], Sec. I B). Note also Ref. [115],
which uses a coherent extraction device as a negentropy
source to demonstrate a transient efficiency that exceeds the
standard Carnot bound for work extraction against a hot
and a cold heat bath.
Conclusions and outlook.—We have shown that

coherence can be turned into a catalytic resource by a
specific design of interactions, and we used this to analyze
work extraction. As observed in the single-shot setting
[105–112], the expected work content may not always
correspond to ordered “worklike” energy (see discussions
in [107]). It is an open question if catalytic coherence is
associated with a cost of ordered energy (see [3], Sec. VIII).
Another question is to quantify expected work extraction
with limited access to coherence.
The existence of catalytic coherence raises the question

of whether other types of resources [52,64–66], in some
sense, can also be turned catalytic. In view of the analogy
between embezzling states [116] and coherent states, one
can speculate whether there exists some counterpart to
catalytic coherence in that setting (see [3], Sec. VIII). One
can also ask whether catalytic coherence and entanglement
catalysis [63] are special cases of a more general class of
catalytic phenomena (see [3], Sec. VIII). On a more general
level, the question is under what conditions, and in what
sense, a resource can be made catalytic.
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