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We study experimentally the far-from-equilibrium dynamics in ferromagnetic Heisenberg quantum
magnets realized with ultracold atoms in an optical lattice. After controlled imprinting of a spin spiral
pattern with an adjustable wave vector, we measure the decay of the initial spin correlations through single-
site resolved detection. On the experimentally accessible time scale of several exchange times, we find a
profound dependence of the decay rate on the wave vector. In one-dimensional systems, we observe
diffusionlike spin transport with a dimensionless diffusion coefficient of 0.22(1). We show how this
behavior emerges from the microscopic properties of the closed quantum system. In contrast to the one-
dimensional case, our transport measurements for two-dimensional Heisenberg systems indicate anoma-
lous superdiffusion.
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Since its introduction, the Heisenberg spin model has
posed fundamental challenges for the understanding of
nonequilibrium dynamics in quantum magnets. On a very
basic, phenomenological level, the concept of spin diffu-
sion was introduced more than 60 years ago [1–3]. It has
been commonly applied to interpret nuclear magnetic
resonance spin lattice relaxation and electron spin reso-
nance experiments [4–8]. However, up to now it has never
been justified ab initio from a microscopic model.
Moreover, many analytical and numerical studies suggested
the existence of anomalous diffusion in Heisenberg
models at high temperature because of nontrivial commu-
tation relations between spin operators leading to a failure of
usual hydrodynamics [9–12]. The strongest evidence for
anomalous diffusion resulted from the memory function
approach [9,10] and classical numerical simulations
[11,12]. In one dimension, Heisenberg models have the
additional property of being integrable [13]. As a result, at
zero temperature the linear spin response is ballistic in the
gapless phase [14], while at finite temperature no definite
conclusion could be reached so far [15–27]. It has been
argued that the regular, nonballistic contribution to spin
transport can indeed be of diffusive character at finite
temperature [21,22].
To address this fundamental problem, we experimentally

study the far-from-equilibrium dynamics of quantum spins
in one and two dimensions, realized with ultracold atoms in
optical lattices. In our study, we prepare initial spin spiral
states of a defined wave vector and track their relaxation
dynamics. Our study is also motivated by recent experi-
ments on spin diffusion in ultracold fermions [28–30],
which found an exceptionally low transverse spin diffusion

constant in two dimensions [29], very different from three-
dimensional results [30]. These so far unexplained results
motivate studies in alternative systems to check the general-
ity of the observation. In our experiment and numerical
simulations, we find that spin dynamics at high energy
density in one-dimensional Heisenberg systems exhibits
diffusive character. An intuitive way to understand the
emergence of such a classicallike transport is given through
interaction-induced dephasing between the many-body
eigenstates spanning the initial spin spiral state. In contrast,
the 2D system is shown to exhibit anomalous super-
diffusion for the observed intermediate time scales, in
agreement with earlier predictions [10]. We find in both
cases that the closed quantum evolution at high energy
density is in stark contrast to the one of a few excited
magnons, which propagate ballistically [31–33].
Following the concept of spin-grating spectroscopy

[34–36], we prepare initial large amplitude transverse spin
spirals jχðQÞi ¼ Q

jðj↑ij þ e−iQ·xj j↓ijÞ with a controlled
wavevectorQ, wherexj is the position of the lattice sites.On
a phenomenological level, the evolution of the spiral would
be captured through the dynamics of a single component
M⊥ of the transverse magnetization. The combination of the
continuity equation and the empirical Fick’s law leads to the
diffusion equation ∂M⊥=∂t ¼ D∇2M⊥, with a diffusion
constant D. This equation predicts a characteristic depend-
ence of the lifetime τ of the transverse magnetizationM⊥ on
the initial wave vector 1=τ ¼ DjQj2. In order to test this
prediction far from equilibrium, where a vast number of
states are available to scatter, we track the relaxation
dynamics of the spin spiral with single-site resolution and
compare our experiments to numerical simulations.
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We implement the spin Hamiltonian by using ultracold
bosonic 87Rb atoms in an optical lattice, initially prepared
in a Mott insulating regime with unity filling. In this strong
coupling regime, our atomic lattice system can be mapped
to the ferromagnetic Heisenberg model [37–39], which is
slightly modified in our case due to a small number of
mobile particle-hole defects:

Ĥ ¼ −Jex
X
i

�
1

2
ðŜþi Ŝ−iþ1 þ Ŝ−i Ŝ

þ
iþ1Þ þ ΔŜzi Ŝ

z
iþ1

�
þ Ĥd:

ð1Þ
Here Jex ≈ 4J2=U is the superexchange coupling, and J
and U denote the hopping and interaction energy scales,
respectively, of the underlying single-band Hubbard model.
We note that, for the spin states employed in the experi-
ment, the interaction energies for different spin channels
vary only on the level of 1% resulting in an almost isotropic
model with Δ ≈ 1 [40,41]. The spin operators are defined
through the boson creation and annihilation operators b̂†σ;i
and b̂σ;i for the two spin states σ ¼ ↑;↓ as Ŝþi ¼ b̂†↑;ib̂↓;i,

Ŝ−i ¼ b̂†↓;ib̂↑;i, and Ŝzi ¼ ðn̂↑;i − n̂↓;iÞ=2. The last term,

Ĥd, in Eq. (1) describes the dynamics of defects. Here
we restrict the discussion to the dominating effect of holes
in the Mott insulator. The probability of doubly occupied
sites is assumed to be lower and thus neglected. The
Hamiltonian in Eq. (1) then corresponds to the bosonic t-J
model [42].
Our experiments started with the preparation of a

degenerate 87Rb Bose gas confined in a single antinode
of a vertical optical standing wave. The two-dimensional
gas was then driven into the Mott insulating phase with
unity filling by adiabatically switching on a horizontal
square lattice with lattice spacing alat ¼ 532 nm. Two long-
lived hyperfine states (j↓i≡ jF ¼ 1; mF ¼ −1i and
j↑i≡ j2;−2i) are used as a pseudo-spin-1=2 system. For
the preparation of the initial spiral, all many-body spin
dynamics was suppressed in a deep optical lattice of 20Er
lattice depth. Here Er ¼ h2=ð8ma2latÞ denotes the recoil
energy of the lattice, with m being the atomic mass. A
global π=2 pulse of 10 μs duration then transferred all
atoms to a symmetric superposition of the two hyperfine
states. Next, a relative phase between neighboring spins
was imprinted by exposing the atoms to a constant
magnetic field gradient of 0.2 G=cm (corresponding to a
frequency shift of 20 Hz=alat). Time evolution in the
gradient field leads to a linear growth of this relative phase
over time and thus imprints a controlled spin spiral state
jχðQÞi. Subsequently, the gradient was reduced to a
negligible value of ≤ 2 mG=cm for the further course of
the experiment. The evolution of the strongly interacting
spins was then initiated by lowering the depth of either one
or both of the horizontal lattices within 5 ms to the desired
value between 8 and 16Er for the experiments in 1D or 2D,
respectively. The experiments in 1D were carried out in

weaker lattices, as the transition point towards the super-
fluid region occurs at a lower lattice depth. For the ramp-
down, we chose a time scale that both minimizes heating
while still being short compared to the ensuing spin
dynamics. Then the system was let to evolve for variable
times of up to thold ≃ 3ℏ=Jex. For detection, the final spin
configuration was frozen by rapidly increasing the lattice
depth within 1 ms to 40Er. A second π=2 pulse then
completed the global Ramsey interferometer by rotating the
transverse spiral to the measurement basis along the z
direction. Finally, the j↑i state was optically removed from
the lattice, and the remaining atoms nj per site j in the j↓i
component were imaged with single-site resolved fluores-
cence detection [43] (see Fig. 1).
We analyze the spiral pattern through a second-order

correlation function g2ðj; kÞ ¼ hnjnki=ðhnjihnkiÞ and
thereby avoid cancellation of the spiral signal due to
shot-to-shot fluctuations in its phase caused by uniform
magnetic field fluctuations. Note that in this case g2ðj; kÞ is
equivalent to RehŜþj Ŝ−k i when neglecting defects [41]. The
correlation signal dominantly depends on the distance d
between sites, such that g2ðdÞ ¼ N

P
jhnjnjþdi=ð

P
jhnjiÞ2

can be used to improve the signal-to-noise ratio. Here h·i
represents the ensemble average over different experimen-
tal realizations, whereas the sum describes the spatial
average over N different positions.
For increasing times thold, we observe a decay of the

visibility of the spiral pattern, while its period remains
unchanged. An exemplary data set for such a dynamics in
1D is shown in Fig. 2 for an initial spiral with wavelength
λ ¼ 5.7ð1Þalat. From an exponential fit to the decaying
visibility, we find a lifetime of τ ¼ 30ð3Þ ms corresponding
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FIG. 1 (color online). Experimental sequence for the measure-
ment of the spiral evolution. The illustrations on top show the
spin distribution in the transverse plane at different stages of the
experiment as indicated by the gray shading [before (i) and after
(ii) spiral imprinting and after evolution (iii)]. The pictures below
are single shot measurements at the respective times after an
additional π=2 pulse (not shown) and removal of the j↑i state.
The experimental sequence is depicted at the bottom.
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to 2.1ð3Þℏ=Jex. We note that a simple mean-field treatment
of the relaxational dynamics in the Heisenberg model based
on a Landau-Lifshitz-type evolution equation does not
exhibit any dynamical evolution. Thus, quantum fluctua-
tions beyond linear order are responsible for the decay of
the spin spiral. We compare the experimentally observed
decay to exact diagonalization predictions for the
Heisenberg and the t-J model taking the nonlinearities
fully into account (see Fig. 2). Both models predict an
initial quadratic decay due to dephasing that happens on the
fastest time scale (ℏ=Jex or ℏ=J) [41]. Experimentally, we
only sample the decay on the superexchange time scale
ℏ=Jex and thus cannot resolve the fast initial dynamics in
the t-J model. While both models show good qualitative
agreement with the experimental data, the t-J model
reproduces the observations for an independently charac-
terized hole probability of 0.08(1).
In order to check the assumption of diffusionlike spin

transport, we measure the lifetime τ for different wave
vectors Q, in both 1D and 2D. In 2D, the spiral wave
vectors were oriented diagonally to the lattice
Q ¼ ðQ;QÞ= ffiffiffi

2
p

. The resulting data are shown in Fig. 3
for both dimensionalities, different lattice depths, and
different initial wave vectors. When scaling the data with
the exchange coupling Jex, we find the data sets for
different lattice depths to collapse. From this, we deduce
that ℏ=Jex is the relevant time scale for the main features of
the observed dynamics and superexchange-mediated quan-
tum magnetism is the underlying mechanism driving the
dynamics. In order to gain further insight into the wave
vector dependence of the spiral lifetime, we plot the data in
a double-logarithmic plot and fit a power law with variable
exponent α to the data τ ∝ Q−α. For our 1D data, we find an
exponent of α ¼ 1.9ð1Þ in good agreement with diffusive

spin transport. In 2D, the fitted exponent yields α ¼ 1.6ð1Þ,
differing notably from the one of diffusive transport and
hinting at anomalous superdiffusion. For the analysis of the
data, the exchange coupling Jex was extracted independ-
ently from single magnon propagation measurements
following our earlier results in Ref. [32]. In these mea-
surements, we consistently find that the measured Jex is
20(10)% larger than the one calculated from ab initio
single-band calculations. We attribute this difference to
interaction-induced multiband effects that are expected to
effectively lower U but raise J [44].
The observed diffusionlike behavior can be understood

microscopically in the one-dimensional case, where the
numerical simulations based on the Heisenberg model also
point to an approximately quadratic dependence of the
decay rate on the wave vector in the experimentally
accessible region. As the spiral state is not an eigenstate
of the Heisenberg model, it shows overlap with several
many-body eigenstates. Our simulations show that the
energy spread ΔE in the many-body spectrum in fact
increases quadratically with the spiral wave vector Q (see
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FIG. 2 (color online). Decay of a 1D spin spiral. Measured
decay of an exemplary 1D spin spiral with wavelength λ ¼ 5.7alat
at 10Er lattice depth. The solid blue line is an exponential fit used
to extract the lifetime. We also show theoretical predictions of the
Heisenberg model (gray, dashed line) and the t-J model for 0.08
hole probability (gray, solid line). The inset shows three measured
correlations g2ðdÞ at t1 ¼ 0, t2 ¼ 0.7ℏ=Jex, and t3 ¼ 2.8ℏ=Jex
(dark to bright blue), from which the visibility is extracted via
sinusoidal fits.
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FIG. 3 (color online). Wave vector dependence of the spin
spiral lifetimes. We plot the data for 1D (a) and 2D (b) spirals
double logarithmically and extract the exponents via power law
fits (black lines). The lifetime is scaled with the superexchange
rate ℏ=Jex, which results in a collapse of the measurements at
different lattice heights [in 1D: 8Er (blue), 10Er (green), 12Er
(yellow), and 13Er (red) and in 2D: 12Er (blue), 14Er (green),
and 16Er (yellow)]. Additionally, predictions of the Heisenberg
model (numerically solved in 1D, spin wave calculations in 2D)
are shown as gray solid lines. The gray band in (a) is obtained
numerically from the t-J model with hole probabilities between
0.04 and 0.12. The insets show the experimental data without
scaling of the lifetimes.
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Fig. 4). The diffusivelike behavior in the evolution of the
spiral state can thus be traced back to a many-body
dephasing effect, with the shortest decay time occurring
for a classical Néel state Q ¼ π=alat (see Ref. [45]).
When comparing the prediction in detail to the exper-

imentally measured lifetimes (see Fig. 3), we find the latter
to be shifted systematically to lower values. This behavior
can be reproduced when considering the t-J model with the
measured hole probability, indicating a good qualitative
and quantitative understanding of the evolution. The
observations in the 2D situation are compared to results
from a spin-wave theory prediction for the case without
holes [41]. While we find a similar qualitative behavior
in this analysis, our experimental results are again
shifted systematically towards lower lifetime values.
Unfortunately, numerical simulations in 2D including holes
remain currently out of reach because of the prohibitively
large underlying Hilbert space.
The time scale of the diffusive behavior in 1D is set by

the diffusion constant D. From dimensional analysis, we
find its natural units to be ℏ= ~m, where ~m ¼ ℏ2=ð2Jexa2latÞ is
the effective magnon mass. When assuming diffusive
behavior (fixing the exponent α ¼ 2), we extract D ¼
0.22ð1Þℏ= ~m from our data. Remarkably, this is among the
lowest values measured to date in a 1D many-body setting,
even though our measurements are carried out far from
equilibrium in the highly excited regime.
An intriguing additional question is the dependence of

the diffusion constant on the hole density. In Fig. 5, we
compare all 1D measurements for the lowest possible hole
probability (the same data as shown in Fig. 3) with data

obtained for larger hole probabilities. Our data show a clear
trend towards an increasing diffusion constant with an
increasing hole probability, consistent with numerical
predictions based on the t-J model. A linear increase
can be indeed expected in 1D as each hole—localized
during the preparation—introduces a fixed phase defect.
In conclusion, we have studied far-from-equilibrium spin

transport in the Heisenberg model by using high-energy-
density spin spiral states in 1D and 2D. A numerical
analysis explained the observed diffusionlike behavior in
integrable 1D chains on a microscopic level. We found that
the main features of the magnetic spin transport are robust
against a small number of mobile hole defects in the
system. In contrast to the diffusive behavior in 1D, we
observed anomalous superdiffusion in 2D Heisenberg
magnets where integrability is broken. For future studies,
it would be interesting to explore the long-time behavior,
which might in 1D shed light on the question of a residual
ballistic transport [15–27], while in 2D it could unveil a
possible crossover from a superdiffusive behavior to sub-
diffusive behavior [10]. Especially in 1D, it would be
valuable to study spirals prepared with a wave vector close
to Q ∼ π=alat, where a transformation to the antiferromag-
netic Heisenberg Hamiltonian is possible. Thus, one can
expect that the dynamics can be described with a Luttinger
liquid formalism and predictions of Refs. [21,22] could be
tested. Furthermore, it would be interesting to study the
absence of transport in interacting, many-body localized
spin systems subject to quenched disorder [46–53] using,
for instance, local interferometric techniques [54,55].

We thank I. Affleck, M. Cheneau, T. Giamarchi, F.
Heidrich-Meissner, A. Läuchli, M. Lukin, and J. Thywissen
for valuable discussions. The authors acknowledge support
fromMPG,EU (UQUAM),Harvard-MITCUA,ARO-MURI
Quism program, and ARO-MURI on Atomtronics, as well as
the Austrian Science Fund (FWF) Project No. J 3361-N20.

0

1

2
E

ne
rg

y 
sp

re
ad

, 
 (J

ex
)

Wave vector, Q (alat
-1)

0

0

0.2

0.4

3 6
P

ro
ba

b
ili

ty

Energy (Jex)
0

P
ro

ba
b

ili
ty

Energy (Jex)
0 3 6

0

0.2

0.4

FIG. 4 (color online). Microscopic view of the diffusionlike
behavior in 1D. The energy spread of eigenstates contributing to
the spin spiral decay grows quadratically with wave vector Q.
This leads to the observed quadratic Q dependence of the decay
rate, as expected for classical spin diffusion. The data shown for
two system sizes of 12 (blue) and 16 (red) sites are obtained from
full diagonalization of 1D Heisenberg chains. The insets show
energy histograms weighted with the overlap of the initial spiral
and the eigenstates for Q ¼ π=4alat and Q ¼ π=2alat for systems
with 16 spins. A spin spiral with wave vectorQ is a superposition
of many-body eigenstates with wave vectors k that are integer
multiples of Q.

 0

 2

 4

 0  1.5  3

Hole probability

D
iff

us
io

n 
co

ns
ta

nt
, 

D
~

 0

 0.1

 0.2

 0.3

 0.4

 0  0.1  0.2

Q2 (alat
-2)

R
at

e,
 

 (
J e

x

FIG. 5 (color online). Dependence of the diffusion constant in
1D on the hole density. The diffusion constant D increases
approximately linearly with hole probability. The gray area is the
numerical result of the t-J model with its 95% confidence
interval. The inset shows the decay rate 1=τ of the spin spiral
versus the squared wave vector Q2 for the lowest (blue) and
highest (red) hole probability.

PRL 113, 147205 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

3 OCTOBER 2014

147205-4



*Corresponding author.
shild@mpq.mpg.de

†Present address: RIKEN Center for Emergent Matter
Science (CEMS), Wako, 351-0198, Japan.

[1] N. Bloembergen, Physica (Amsterdam) 15, 386 (1949).
[2] L. Van Hove, Phys. Rev. 95, 1374 (1954).
[3] P. G. De Gennes, J. Phys. Chem. Solids 4, 223 (1958).
[4] D. Hone, C. Scherer, and F. Borsa, Phys. Rev. B 9, 965

(1974).
[5] J. P. Boucher, M. A. Bakheit, M. Nechtschein, M. Villa, G.

Bonera, and F. Borsa, Phys. Rev. B 13, 4098 (1976).
[6] H. Benner, Phys. Rev. B 18, 319 (1978).
[7] M. Takigawa, N. Motoyama, H. Eisaki, and S. Uchida,

Phys. Rev. Lett. 76, 4612 (1996).
[8] K. R. Thurber, A. W. Hunt, T. Imai, and F. C. Chou, Phys.

Rev. Lett. 87, 247202 (2001).
[9] M. Chertkov and I. Kolokolov, Phys. Rev. B 49, 3592 (1994).

[10] S. W. Lovesey, E. Engdahl, A. Cuccoli, V. Tognetti, and E.
Balcar, J. Phys. Condens. Matter 6, L521 (1994).

[11] G. Müller, Phys. Rev. Lett. 60, 2785 (1988).
[12] O. F. de Alcantara Bonfim and G. Reiter, Phys. Rev. Lett.

69, 367 (1992).
[13] H. Bethe, Z. Phys. A 71, 205 (1931).
[14] B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 65, 243

(1990).
[15] H. Castella, X. Zotos, and P. Prelovsek, Phys. Rev. Lett. 74,

972 (1995).
[16] X. Zotos, F. Naef, and P. Prelovsek, Phys. Rev. B 55, 11029

(1997).
[17] X. Zotos, Phys. Rev. Lett. 82, 1764 (1999).
[18] B. N. Narozhny, A. J. Millis, and N. Andrei, Phys. Rev. B

58, R2921 (1998).
[19] J. V. Alvarez and C. Gros, Phys. Rev. Lett. 88, 077203 (2002).
[20] F. Heidrich-Meisner, A. Honecker, D. C. Cabra, and W.

Brenig, Phys. Rev. B 68, 134436 (2003).
[21] J. Sirker, R. G. Pereira, and I. Affleck, Phys. Rev. Lett. 103,

216602 (2009).
[22] J. Sirker, R. G. Pereira, and I. Affleck, Phys. Rev. B 83,

035115 (2011).
[23] T. Prosen, Phys. Rev. Lett. 106, 217206 (2011).
[24] M. Žnidarič, Phys. Rev. Lett. 106, 220601 (2011).
[25] R. Steinigeweg andW. Brenig, Phys. Rev. Lett. 107, 250602

(2011).
[26] C. Karrasch, J. H. Bardarson, and J. E. Moore, Phys. Rev.

Lett. 108, 227206 (2012).
[27] M. Znidaric, arXiv:1405.5541.
[28] A. Sommer, M. Ku, G. Roati, and M.W. Zwierlein, Nature

(London) 472, 201 (2011).
[29] M. Koschorreck, D. Pertot, E. Vogt, and M. Köhl, Nat. Phys.

9, 405 (2013).
[30] A. B. Bardon, S. Beattie, C. Luciuk, W. Cairncross, D. Fine,

N. S. Cheng, G. J. A. Edge, E. Taylor, S. Zhang, S. Trotzky,
and J. H. Thywissen, Science 344, 722 (2014).

[31] M. Ganahl, E. Rabel, F. H. L. Essler, and H. G. Evertz, Phys.
Rev. Lett. 108, 077206 (2012).

[32] T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P.
Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi,
C. Gross, I. Bloch, and S. Kuhr, Nat. Phys. 9, 235 (2013).

[33] T. Fukuhara, P. Schauß, M. Endres, S. Hild, M. Cheneau, I.
Bloch, and C. Gross, Nature (London) 502, 76 (2013).

[34] A. R. Cameron, P. Riblet, and A. Miller, Phys. Rev. Lett. 76,
4793 (1996).

[35] W. Zhang and D. G. Cory, Phys. Rev. Lett. 80, 1324 (1998).
[36] G. Wang, B. L. Liu, A. Balocchi, P. Renucci, C. R. Zhu, T.

Amand, C. Fontaine, and X. Marie, Nat. Commun. 4, 2372
(2013).

[37] L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett.
91, 090402 (2003).

[38] A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett. 90,
100401 (2003).

[39] E. Altman, W. Hofstetter, E. Demler, and M. D. Lukin, New
J. Phys. 5, 113 (2003).

[40] D. Pertot, B. Gadway, and D. Schneble, Phys. Rev. Lett.
104, 200402 (2010).

[41] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.113.147205 for addi-
tional details of experiment and theory.

[42] A. Auerbach, Interacting Electrons and Quantum
Magnetism (Springer, New York, 1994).

[43] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I.
Bloch, and S. Kuhr, Nature (London) 467, 68 (2010).

[44] S. Will, T. Best, U. Schneider, L. Hackermüller,
D.-S. Lühmann, and I. Bloch, Nature (London) 465, 197
(2010).

[45] P. Barmettler, M. Punk, V. Gritsev, E. Demler, and E.
Altman, Phys. Rev. Lett. 102, 130603 (2009).

[46] D. Basko, I. Aleiner, and B. Altshuler, Ann. Phys.
(Amsterdam) 321, 1126 (2006).

[47] V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev.
Lett. 95, 206603 (2005).

[48] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111
(2007).

[49] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
[50] J. H. Bardarson, F. Pollmann, and J. E. Moore, Phys. Rev.

Lett. 109, 017202 (2012).
[51] R. Vosk and E. Altman, Phys. Rev. Lett. 110, 067204

(2013).
[52] V. Oganesyan and D. A. Huse, arXiv:1305.4915.
[53] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett.

111, 127201 (2013).
[54] M. Knap, A. Kantian, T. Giamarchi, I. Bloch, M. D. Lukin,

and E. Demler, Phys. Rev. Lett. 111, 147205 (2013).
[55] M. Serbyn, M. Knap, S. Gopalakrishnan, Z. Papić, N. Y.

Yao, C. R. Laumann, D. A. Abanin, M. D. Lukin, and
E. A. Demler, Phys. Rev. Lett. 113, 147204 (2014).

PRL 113, 147205 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

3 OCTOBER 2014

147205-5

http://dx.doi.org/10.1016/0031-8914(49)90114-7
http://dx.doi.org/10.1103/PhysRev.95.1374
http://dx.doi.org/10.1016/0022-3697(58)90120-3
http://dx.doi.org/10.1103/PhysRevB.9.965
http://dx.doi.org/10.1103/PhysRevB.9.965
http://dx.doi.org/10.1103/PhysRevB.13.4098
http://dx.doi.org/10.1103/PhysRevB.18.319
http://dx.doi.org/10.1103/PhysRevLett.76.4612
http://dx.doi.org/10.1103/PhysRevLett.87.247202
http://dx.doi.org/10.1103/PhysRevLett.87.247202
http://dx.doi.org/10.1103/PhysRevB.49.3592
http://dx.doi.org/10.1088/0953-8984/6/35/001
http://dx.doi.org/10.1103/PhysRevLett.60.2785
http://dx.doi.org/10.1103/PhysRevLett.69.367
http://dx.doi.org/10.1103/PhysRevLett.69.367
http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1103/PhysRevLett.65.243
http://dx.doi.org/10.1103/PhysRevLett.65.243
http://dx.doi.org/10.1103/PhysRevLett.74.972
http://dx.doi.org/10.1103/PhysRevLett.74.972
http://dx.doi.org/10.1103/PhysRevB.55.11029
http://dx.doi.org/10.1103/PhysRevB.55.11029
http://dx.doi.org/10.1103/PhysRevLett.82.1764
http://dx.doi.org/10.1103/PhysRevB.58.R2921
http://dx.doi.org/10.1103/PhysRevB.58.R2921
http://dx.doi.org/10.1103/PhysRevLett.88.077203
http://dx.doi.org/10.1103/PhysRevB.68.134436
http://dx.doi.org/10.1103/PhysRevLett.103.216602
http://dx.doi.org/10.1103/PhysRevLett.103.216602
http://dx.doi.org/10.1103/PhysRevB.83.035115
http://dx.doi.org/10.1103/PhysRevB.83.035115
http://dx.doi.org/10.1103/PhysRevLett.106.217206
http://dx.doi.org/10.1103/PhysRevLett.106.220601
http://dx.doi.org/10.1103/PhysRevLett.107.250602
http://dx.doi.org/10.1103/PhysRevLett.107.250602
http://dx.doi.org/10.1103/PhysRevLett.108.227206
http://dx.doi.org/10.1103/PhysRevLett.108.227206
http://arXiv.org/abs/1405.5541
http://dx.doi.org/10.1038/nature09989
http://dx.doi.org/10.1038/nature09989
http://dx.doi.org/10.1038/nphys2637
http://dx.doi.org/10.1038/nphys2637
http://dx.doi.org/10.1126/science.1247425
http://dx.doi.org/10.1103/PhysRevLett.108.077206
http://dx.doi.org/10.1103/PhysRevLett.108.077206
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nature12541
http://dx.doi.org/10.1103/PhysRevLett.76.4793
http://dx.doi.org/10.1103/PhysRevLett.76.4793
http://dx.doi.org/10.1103/PhysRevLett.80.1324
http://dx.doi.org/10.1038/ncomms3372
http://dx.doi.org/10.1038/ncomms3372
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.90.100401
http://dx.doi.org/10.1103/PhysRevLett.90.100401
http://dx.doi.org/10.1088/1367-2630/5/1/113
http://dx.doi.org/10.1088/1367-2630/5/1/113
http://dx.doi.org/10.1103/PhysRevLett.104.200402
http://dx.doi.org/10.1103/PhysRevLett.104.200402
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.147205
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.147205
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.147205
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.147205
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.147205
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.147205
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.147205
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09036
http://dx.doi.org/10.1038/nature09036
http://dx.doi.org/10.1103/PhysRevLett.102.130603
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.82.174411
http://dx.doi.org/10.1103/PhysRevLett.109.017202
http://dx.doi.org/10.1103/PhysRevLett.109.017202
http://dx.doi.org/10.1103/PhysRevLett.110.067204
http://dx.doi.org/10.1103/PhysRevLett.110.067204
http://arXiv.org/abs/1305.4915
http://dx.doi.org/10.1103/PhysRevLett.111.127201
http://dx.doi.org/10.1103/PhysRevLett.111.127201
http://dx.doi.org/10.1103/PhysRevLett.111.147205
http://dx.doi.org/10.1103/PhysRevLett.113.147204

