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The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a
particular case of a wider class of electron beams that can be used to measure electron magnetic circular
dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by
simply breaking the symmetry of the electron probe phase distribution using the aberration-corrected optics of
a scanning transmission electron microscope. The required phase distribution of the probe depends on the
magnetic symmetry and crystal structure of the sample. The calculations indicate that EMCD signals utilizing
the phase of the electron probe are as strong as those obtained by nanodiffraction methods.
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The development of quantitative magnetic characteriza-
tion techniques goes hand in hand with progress in nano-
technology. A terabit per square inch recording density [1,2]
means that the area available for one bit is not larger than a
square of size 25 × 25 nm2, assuming bits arranged laterally.
This pushes demands for magnetic measurements down to a
few nm scale [3,4], approaching atomic resolution.
An attractive option for measuring magnetism at such

high spatial resolutions is an experimental technique based
on electron magnetic circular dichroism [5–15] (EMCD).
Particularly, a great promise came recently from utilizing
electron vortex beams (EVBs) [16–20] within an electron
microscope. With EVBs, it should be possible to measure
EMCD in the direction of the transmitted beam [19,21–26],
which brings a substantial increase in signal-to-noise ratio
compared to intrinsic EMCD measured in between Bragg
spots [5,7,15]. However, obtaining isolated atomic-size
EVBs that can be used for EMCD measurements has not
yet been possible, although different electron optical setups
have been proposed [18,27–31].
In this Letter, we show how EMCD signals can be

measured with atomic resolution in the electron microscope
at the transmitted beam without the necessity of producing
electron probes carrying orbital angularmomentum (OAM).
The calculations presented here reveal that EVBs carrying
OAM are just a particular case of a wider class of electron
beams that can be used to measure EMCD signals. The key
feature for obtaining magnetic dichroism with atomic reso-
lution is the relation between the crystal structure, magnetic
symmetry of the sample, and the distribution of the phase in
the electron beam. The predicted strength of such an EMCD
signal is about half of what was reported in the first EMCD
experiment on an iron crystal using a parallel beam [5], but
with the main difference that it achieves atomic spatial
resolution. As a consequence, electron beams that can be

obtained by aberration-corrected scanning transmission
electron microscopes (STEMs) without additional apertures
are predicted to detect nonzero EMCD signals at the trans-
mitted beam.
The theoretical prediction is based on a two-beam model

for convergent beam electron diffraction (CBED) in STEM,
see Fig. 1. The two disks represent a transmitted beam and
elastically scattered beam with Bragg vector G ¼ ðG; 0; 0Þ.
For simplicity, the model assumes only one Bragg-scattered
beam, a situation with a single symmetry plane—i.e., the x
axis. However, the results obtained here can easily be
generalized to a situation with more Bragg-scattered beams
and different symmetries.
Overlap of the two CBED disks means that two regions

describing the elastically scattered beam wave function
need to be considered. Region Ω1 is such that, for wave

(a)

(b)

(c)

FIG. 1 (color online). Schematic drawing of a diffraction of a
convergent electron beam assuming (a) no overlap between the
CBED discs, (b) partial overlap of the CBED discs. Two-beam
case orientation, illustrated in (c), is assumed and a general k
vector is marked, together with its mirror image k0. The mirror
axis is marked as the dashed horizontal line.
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vectors k ∈ Ω1, there is no other wave vector within the
same transmitted disk, which would differ from k by G.
Contrary to Ω1, the shaded lens-shaped region Ω2 in
Fig. 1 contains wave vectors k, for which kþG lies
within the same transmitted disk. Reasons for this dis-
tinction are related to the necessary condition for atomic
resolution in STEM, which requires overlap of discs to
achieve a coherent interference of beam components [32].
The wave function of the elastically scattered incoming

probe can be written as

ψ iðrÞ ¼
X

k∈Ω1∪Ω2

Ceiϕkeik·r½1þ iTGeiG·r�

þ
X
k∈Ω2

CeiϕkþGeiðkþGÞ·r½1þ iTGeiG·r�; ð1Þ

where C is a real-valued normalization constant. The Bragg-

scattered beam is phase shifted by π=2, and thus, its relative

amplitude can be written as iTG with real-valued TG. BothC
and TG are assumed to be k independent, which is a good
approximation for thin samples usually studied in aberration-
corrected STEM and spectrum imaging experiments [32].
The ϕk represents the phase of the beam component with
wave vector k. Nonzero ϕk can originate, for example, from
aberrations or probe displacement. For an EVB with OAM
hL̂zi ¼ mℏ, we get ϕk ¼ m arctanðky=kxÞ. Radius of the
CBED disks qmax is related to convergence semiangle α via
α ¼ qmaxλ, where λ is the de Broglie wavelength of electrons
accelerated by voltage Vacc.
For the outgoing wave, the elastic scattering of the probe

will be neglected. Additionally, the detector will be
considered to be far away, observing a single plane wave
ψfðrÞ ¼ eikf ·r.
The double-differential scattering cross section can then

be evaluated as (see Supplemental Material [33])

∂2σ

∂Ω∂E ¼ C2
X

k∈Ω1∪Ω2

½Sðq;q; EÞ þ T2
GSðq −G;q −G; EÞ þ 2TGIm½Sðq;q −G; EÞ��

þ
X
k∈Ω2

C2½½1þ 2TG sinðΔϕk;GÞ�Sðq −G;q −G; EÞ þ T2
GSðq − 2G;q − 2G; EÞ

þ 2TGIm½Sðq −G;q − 2G; EÞ� þ 2Re½e−iΔϕk;GSðq;q −G; EÞ�
þ 2TGIm½e−iΔϕk;GSðq;q − 2G; EÞ� þ 2T2

GRe½e−iΔϕk;GSðq −G;q − 2G; EÞ��; ð2Þ

where Δϕk;G ¼ ϕkþG − ϕk, and

Sðq;q0;EÞ¼
X
I;F

D
Fje

−iq·r

q2
jI
ED

Ije
iq0·r

q02
jF
E
δðE−EFþEIÞ;

ð3Þ
is the mixed dynamical form factor (MDFF), with momen-
tum transfer q ¼ kf − k carrying the k dependence of the
terms in the sum in Eq. (2). The jIi; jFi denote initial and
final states of crystal with energy EI; EF, respectively. Note
that the Coulomb factors have been included directly into
the definition of the MDFF.
Magnetic signal originates from imaginary parts of

MDFFs according to the dipole model [15,35]

Sðq;q0; EÞ ≈ NðEÞq · q0 þ iðq × q0Þ ·MðEÞ
q2q02

; ð4Þ

where NðEÞ stands for an isotropic nonmagnetic white-line
component andMðEÞ is a vector representing the magnetic
component. Assuming magnetization only along the z
direction and having G ¼ ðG; 0; 0Þ, one obtains

Im½Sðq −mG;q − nG; EÞ� ¼ ðn −mÞGMzðEÞqy
jq −mGj2jq − nGj2 : ð5Þ

In the simplest case, when elastic scattering is
neglected (TG ¼ 0) and the convergence angle is small,

i.e., qmax < ðG=2Þ and, thus, Ω2 is empty, Eq. (2) reduces
to a simple sum of dynamical form factors ð∂2σ=∂Ω∂EÞ ¼
C2

P
k∈Ω1

Sðq;q; EÞ. In other words, Eq. (2) becomes an
incoherent summation over all components k of the
convergent electron probe. No magnetic signal can arise
from such a condition because the dynamical form factor is
real [see Eq. (5) for n ¼ m ¼ 0]. Notice that EMCD is
defined as the result of subtracting two sets of electron
energy-loss spectra collected with different electron phases
[5]. If there is not a magnetic signal in the inelastic
scattering, there would not be an EMCD signal either.
Assuming non-negligible elastic scattering (nonzero TG)

for a probe with a small enough convergence angle, so that
there is no overlap of the diffracted discs [empty Ω2, see
Fig. 1(a)], Eq. (2) reduces to the first sum only. The third term
in the first sum explicitly contains an imaginary part of
MDFF; i.e., one can expect a magnetic signal to be present at
some scattering angles. However, there is no dependence of
the scattering cross section on the phase ϕk, which means
that the OAM, or in fact, any k-space distribution of the
phase in the probe does not matter. In other words, if the
convergence angle is small enough such that qmax < ðG=2Þ,
the beam vorticity does not influence the inelastic scattering
cross section.
One can observe a magnetic signal in the setting

described above, but the distribution of the magnetic signal
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is antisymmetric with respect to the mirror axes. Because
the mirror axes necessarily pass through the transmitted
beam, an EMCD signal cannot be observed by a detector
centered on the transmitted beam, regardless of how large
the collection angle is. An example of a CBED diffraction
pattern calculated for an EVB with qmax < ðG=2Þ is shown
below in the left column of Fig. 3. The proof of an
antisymmetry of EMCD signal proceeds in the following
way: Let us consider a wave vector k0 ¼ ðkx;−ky; kzÞ,
which is a mirror image of the wave vector k ¼ ðkx; ky; kzÞ,
see Fig. 1(a). Their combined contribution to the magnetic
signal at kð1Þ

f ¼ ðkfx; kfy; kfz Þ is evaluated using Eq. (5) as

2TGGMzðEÞ
�

qy
jqj2jq −Gj2 þ

q0y
jq0j2jq0 −Gj2

�
; ð6Þ

where qy ¼ kfy − ky and q0y ¼ kfy þ ky. Moving the detector

orientation to its mirror image kð2Þ
f ¼ ðkfx;−kfy; kfz Þ leads to

qð2Þy ¼ −kfy − ky ¼ −q0y → jqð2Þj ¼ jq0j; ð7Þ

q0ð2Þy ¼ −kfy þ ky ¼ −qy → jq0ð2Þj ¼ jqj; ð8Þ

and similarly for jq −Gj. The qy and q0y swap and change
sign; i.e., the magnetic signal in Eq. (6) changes sign as well.
This holds true for all k from the lower half-circles of the
CBED disks; thus, an EMCD signal is, indeed, distributed
antisymmetrically with respect to the mirror axis. In par-
ticular, it vanishes right at the symmetry axis. All observa-
tions of EMCD done so far, except for, possibly, Ref. [19],
are of this nature—so called intrinsic EMCD, caused by
coherence of elastically scattered beam components [5].
Next, we consider a situation with no elastic scattering

(TG ¼ 0), but qmax > ðG=2Þ. This can occur either for
ultrathin samples and sufficiently large convergence angles,
or when the unit cell is large (i.e., the reciprocal lattice
vectors G are small). A limiting case is a single atom in a
cell with an infinite lattice constant. Then, for any nonzero
α, the qmax ¼ α=λwill be larger than ðG=2Þ ¼ ð1=2aÞ → 0.
The inelastic scattering cross section can be written as

∂2σ

∂Ω∂E ¼ C2
X
k

k⊥<qmax

Sðq;q; EÞ

þ 2C2
X
k∈Ω2

Re½e−iΔϕk;GSðq;q −G; EÞ�: ð9Þ

There are two key findings: (1) the scattering cross section
depends on the distribution of the phase in the beam wave
front, (2) an EMCD signal can be observed, despite the fact
that the elastic scattering of the probe was neglected. This
time, however, the imaginary part of MDFF is multiplied
by a sine function of Δϕk;G. A combined contribution of
the probe component k and its mirror image k0 is

2GMzðEÞ
�
sinðΔϕk;GÞqy
jqj2jq −Gj2 þ sinðΔϕk0;GÞq0y

jq0j2jq0 −Gj2
�
: ð10Þ

Note that for a vortex beam passing directly through an
atomic column Δϕk;G ¼ −Δϕk0;G, which allows us to
take the sine function out of the brackets together with a
change of the plus sign into a minus sign in between the
two terms. Moving the detector from kð1Þ

f to its mirror
image kð2Þ

f transforms the momentum transfer vectors as in
Eqs. (7) and (8)—both two terms change sign and then
swap their order. But because of the minus sign in between
them, the resulting contribution is the same at both detector
orientations. This inelastic electron diffraction situation is
very different from the previous case, because here there is
a symmetric distribution of EMCD with respect to the
mirror axis. A symmetric distribution of the magnetic
signal allows us to detect EMCD at the transmitted beam.
This result is in agreement with predictions of Refs. [22,24]
and recent simulations [25].
The prediction can be illustrated by a simulation of the

distributions of the nonmagnetic and magnetic contribu-
tions to the scattering cross section of a single Fe atom,
Fig. 2. The Fe atom was placed in a cell of size 5.3×
5.3 × 0.53 nm3. The simulations were done using a com-
bined multislice—Bloch-wave approach described in
Ref. [26], with the outgoing beam described as a single
plane wave, and the incoming beam was an EVB with
hL̂zi ¼ 1ℏ and qmax ¼ 0.1 a:u:−1, which at Vacc ¼ 200 kV
means α ¼ 4.7 mrad.
The calculations indicate a symmetry of the distribution

of magnetic signal in the diffraction plane, which is a
consequence of Δϕk;G ¼ −Δϕk0;G for all pairs of k
and k0 connected by a mirror symmetry. If, instead,
Δϕk;G ¼ Δϕk0;G, the imaginary part term in Eq. (9) would
not change sign and the resulting distribution of EMCD
would be antisymmetric with respect to the mirror axis.
Thus, the key element to detect an EMCD signal with

atomic resolution here is the k-space distribution of the
phase ϕk in the electron probe. Basically, in STEM one
simply needs to set a phase distribution of the electron

FIG. 2 (color online). L3-edge energy-filtered diffraction pat-
tern of an EVB scattering on a single Fe atom. The individual
panels show the nonmagnetic and magnetic components (EVBs
with OAM ¼ �1ℏ) of the inelastic scattering cross section
assuming the Fe magnetic moment along the z axis. The EMCD
signal results from subtracting the OAM ¼ þ1ℏ from OAM ¼
−1ℏ magnetic components.
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probe that maximizes the symmetric component of EMCD
in the diffraction plane, which happens when the phase
differences Δϕk;G are antisymmetric. Note that shifting the
STEM probe from the atomic column by X introduces a
phase factor eik·X, which modifies the phase distribution
and, in general, also its symmetry. As a consequence, the
EMCD signal intensity is reduced [26] if the electron probe
is not at the center of an atomic column; see also the
Supplemental Material [33].
For a single atom, there is a continuum of mirror axes

passing through the atom. As a consequence, the optimal
beam shape for EMCD is a vortex beam passing through
the atom because it has an antisymmetric phase difference
with respect to all mirror axes passing through its core.
For a crystal with a discrete set of mirror symmetries,

there is a wider range of phase distributions in the probe
wave front that are antisymmetric with respect to all mirror
axes. This is illustrated below, where all the terms of
Eq. (2) are considered.
When considering both an overlap of CBED disks

(qmax > ðG=2Þ) and elastic scattering of the incoming
electron probe (TG ≠ 0), the inelastic scattering cross
section contains several terms with an imaginary part of
MDFF. Some of the terms are strictly antisymmetric and do
not depend on Δϕk;G, but other terms depend on a phase
difference via the real and imaginary parts of the phase
factor, e−iΔϕk;G , multiplying them. Thus, an optimum phase
distribution in the wave front may be rather complicated
and will depend on the particular crystal structure and
magnetic symmetry via dynamical diffraction effects.
With EVBs, when an imaginary part of MDFF is multi-

plied by the real (imaginary) part of the phase factor, e−iΔϕk;G ,
it leads to an antisymmetric (symmetric) EMCD distribution,
respectively. It is interesting to observe how the symmetric
contribution develops as the convergence angle increases.
This is illustrated in Fig. 3 and in Fig. 1 in the Supplemental
Material [33] for a bcc iron crystal with a ¼ 2.87 Å and the
beam accelerated by 200 kV propagating along (001) zone
axis. The overlap onsets when qmax >

1
2
Gð110Þ, where G ¼

ð110Þ is the smallest allowed reflection in a bcc structure.
Thus, qmax must be larger than 1

2
ð ffiffiffi

2
p

=aÞ ¼ 0.1303 a:u:−1 so
that the CBED discs will overlap andΩ2 becomes nonempty.
Integrating the distribution of the magnetic signal over a
circular aperture of diameter 8.7 mrad leads to a zero
magnetic signal for qmax ≤ 0.13 a:u:−1 and nonzero above.
Clearly, when the CBED discs do not overlap (Fig. 3, left
column), the EMCD is antisymmetrically distributed with
respect to all mirror axes—horizontal, vertical, and two
diagonal ones—as anticipated. Above the onset of overlap,
this antisymmetry is broken.
Note that for a discrete set of mirror symmetries, as in

the case of a bcc crystal, it is easy to construct a beam with
a phase distribution, which has antisymmetric phase
differences Δϕk;G with respect to all of the four mirror
axes, but which is not a vortex beam carrying OAM. For
example, a fourfold astigmatism [32] has the required

symmetry, because, for any k, the ϕk changes sign under
mirror symmetry, see Fig. 4(a). An explicit calculation of
the inelastic electron scattering reveals an EMCD signal
distribution, which is, indeed, not antisymmetric, Fig. 4(b).
A calculated STEM image of the magnetic signal from the
Fe L3 edge, Fig. 4(c), shows atomically resolved EMCD
with maxima around positions with fourfold symmetry. The
Fe L3 signal for bcc iron integrated over a collection angle
of 43 mrad centered on a transmitted beam presents an
EMCD of relative intensity of about 1%. The strength of
this EMCD signal is only about half of what it was reported
in the first EMCD experiment [5], but with the main
difference that it has atomic spatial resolution. Moreover,
with this approach, one can use the full intensity of the
electron beam because there is no need of a spiral [27,30] or
fork aperture [18,19], which should result in better signal to
noise ratio EMCD measurements than with EVBs [19].
In conclusion, we show that a finite EMCD signal with

atomic resolution can be observed at the transmitted beam
without the necessity of using EVBs carrying OAM. The
conditions necessary for EMCD are (1) a convergence angle
large enough to cause an overlap of CBED disks and (2)
a phase distribution of the probe in reciprocal space that is
not invariant under mirror symmetries of the crystal. As a
corollary, we propose a simple beam shape, which can be
readily obtained in current aberration-corrected STEM

FIG. 3 (color online). Dependence of probe wave function and
energy-filtered diffraction patterns on convergence angle. (Top
row) Reciprocal space probe wave function after passing through
10 nm of bcc iron along (001) direction. Magnetic signal
components of Fe-L3 diffraction patterns for OAM of �1ℏ are
shown in the middle rows. (Bottom row) Difference of magnetic
signals for the two vorticities with OAM of �1ℏ.
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instruments, and which should allow us to measure EMCD
at the transmitted beam. The EMCD signal obtained with the
method presented can achieve atomic resolution and be as
strong as EMCD nanodiffraction experiments. In a more
general context, our work opens up new ways of utilizing
aberration-correction electron optics to design atomic-size
electron probes with tailored phase distributions for specific
applications and/or crystal symmetries. These electron
probes could be utilized to probe magnetic dichroism, optical
dichroism, and the valley polarization of materials with
unmatched spatial resolution.
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