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Line intensities and oscillator strengths for the controversial 3C and 3D astrophysically relevant lines in
neonlike Fe16þ ions are calculated. A large-scale configuration-interaction calculation of oscillator
strengths is performed with the inclusion of higher-order electron-correlation effects, suggesting that
these contributions cannot explain existing discrepancies between theory and experiment. Then, we
investigate nonlinear dynamical effects, showing that, for strong x-ray sources, the modeling of the spectral
lines by a peak with an area proportional to the oscillator strength is not sufficient. The dynamical effects
give a possible resolution of discrepancies of theory and experiment found by recent measurements, which
motivates the use of light-matter interaction models also valid for strong light fields in the analysis and
interpretation of astrophysical and laboratory spectra.
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Astrophysical spectra recorded by space observatories
provide the only means to determine the element compo-
sition, temperature, density, and velocity of distant celestial
objects such as stars, x-ray binaries, black-hole accretion
disks, or active galactic nuclei [1–9]. Such x-ray (or optical)
spectra are often composed of a series of peaks associated
with a range of elements, ionic charge states, and tran-
sitions. Therefore, a large amount of reliable atomic data is
needed to disentangle the physical properties of the emit-
ting objects. Such data—transition energies and probabil-
ities, oscillator strengths, collisional and recombination
cross sections, etc.—may be obtained from laboratory
experiments (see, e.g., [3,10–16]) or, more economically,
from theoretical calculations (e.g., [17–20]).
The x-ray emission lines of highly charged Fe ions, in

particular Fe16þ, are among the brightest in astrophysical
spectra [6]. Within the last decade, several observations
were performed with the orbiting laboratories Chandra and
XMM-Newton (see, e.g., [5,6,21,22]). The x-ray spectrum
of Fe16þ is, however, not properly reproduced by astro-
physical models. The line-strength ratio of two 2p → 3d
lines in Fe16þ, customarily denoted as 3C and 3D [23], was
observed, but astrophysical results for the 3C=3D ratio are
lower than predicted values [4,5], influencing the analysis
of space observatory data [6]. Laboratory measurements
using an electron beam to excite the Fe ions yielded
electron-impact-excitation cross sections which disagree
with calculations [7,24], hinting towards an incompleteness
in atomic structure or collision theory. The possible sources
of astrophysical discrepancy have been further narrowed
down after the very first laser spectroscopic experiment in
the x-ray regime [3], enabled by the advent of x-ray free-
electron-laser (XFEL) facilities [25]. This experiment,
employing a purely photonic excitation of the ions, gave
hints for a shortcoming of atomic structure theory: a
disagreement between all theoretical predictions (ratio of

the 3C and 3D oscillator strengths around 3.5 and above)
and the experimental line-strength ratio of 2.61(23) has
been stated [3]. In the comparison, as in previous astro-
physical modeling, it was assumed that the intensity of a
line is proportional to the electric dipole oscillator strength.
In this Letter, motivated by the above discrepancy, we

refine the theory of x-ray-ion interactions by calculating
higher-order electron-correlation and dynamical effects
contributing to the 3C=3D line-strength ratio. Our results
suggest that the disagreement with the recent laboratory
experiment [3] may be removed by the inclusion of
nonlinear dynamical effects present in the case of strong
driving fields. The broadening of the spectral lines due to
the high x-ray intensity depends on the large dipole
momenta of the transitions involved, significantly influ-
encing both the line strengths as well as their ratio.
Higher-order correlation and quantum electrodynami-

cal corrections to the oscillator strengths.—To improve the
atomic structure theory of the dipole transition rates, we first
apply a large-scale implementation of the configuration-
interaction Dirac-Fock-Sturm (CI-DFS) method [26,27],
which uses radial wave functions obtained by the numeri-
cal solution of the Dirac-Fock equation for the occupied
orbitals (1s, 2s, 2p, 3d), and virtual orbitals with positive
and negative energies represented by a relativistic
Sturmian basis set. These orbitals are employed to
construct configuration state functions, i.e., Slater deter-
minants jΦi

Ji (i ¼ 1;…; N, where N is the total number
of configurations) in an angular momentum-coupled
basis with a total angular momentum J. The atomic
wave function jΨJi is finally represented as a linear
combination of a large set of configurations:
jΨJi ¼

P
N
i¼1 cijΦi

Ji. The Einstein coefficients Aeg and
oscillator strengths feg are calculated with such wave
functions representing the 2p6 ground ðgÞ and excited
½e ∈ fð2p5Þ1=23d3=2; ð2p5Þ3=23d5=2g� states [28]
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Aeg ¼
4π2e2c2

ggωeg

X
Me;Mg

X
~k=k;σ

jhej~α~ϵ~kσe−i
~k ~rjgij2;

feg ¼
ge
gg

Aegmc3

2ω2
ege2

: ð1Þ

Here, gg (ge) is the degeneracy of the ground (excited)
state, the summation goes over the magnetic quantum
numbers of the initial and final states and the polarization
σ of the emitted photon, and, in addition, an integration is

performed over the direction ~k=k of the emitted photon.
The constants c, e, and m have their usual meaning, and
~α and ~ϵ~kσ stand for the vector of alpha matrices and the
photon polarization unit vector. The dimensionless oscil-
lator strength is of particular interest, because for low
driving-field intensities it is proportional to the line
strength, here given as the integrated peak area of the
resonance photon scattering cross section [28,29]

Seg ¼
π2c2ℏ3

ðℏωegÞ2
ge
gg

Aeg ∝ feg: ð2Þ

In order to match the accuracy of the experimental
transition energies ωeg ¼ ωe − ωg, additional quantum-
electrodynamic (QED) corrections are taken into account
in an ab initio manner. The QED corrections in first order
in the fine-structure constant consist of the self-energy
(SE) and vacuum-polarization terms. The SE correction
is decomposed into zero-, one-, and many-potential
terms. The zero-potential and one-potential terms are
calculated in momentum space using formulas from
Ref. [30]. The residual part of the SE correction, the
so-called many-potential term, is calculated in coordinate
space. For any given intermediate-state angular momenta,
the summation over the Dirac spectrum is performed
using the dual-kinetic-balance approach [31] with basis
functions constructed from B splines. The vacuum-
polarization correction was calculated in the Uehling
approximation [32]. Electron-interaction contributions to
the QED corrections were calculated by evaluating the
single-electron QED diagrams with an effective potential
accounting for the screening of the remaining nine
electrons (see [14]). We find that, although screening
effects significantly modify the single-electron QED
corrections, the total QED effect on the transition
energies is on the 10-meV level.
While we can conclude that transition energies entering

the theoretical oscillator strengths can be predicted with
sufficient accuracy, the discrepancy with the measurements
prevails and it may be rooted in the calculation of the
nondiagonal dipole matrix elements. In previous theoretical
studies, it was assumed that the many-electron wave
function can be well represented by constructing the
configuration space with single and double exchanges

from the reference-state configuration. Here, we also take
into account triple excitations, resulting in a huge number
of configurations. As a result, for the case of single and
double excitations included, the 3C=3D oscillator strength
ratio is 3.57, while the contribution of the triple excitation is
as low as −0.01. Thus, our results confirm earlier theo-
retical calculations and disprove the significance of triple
excitations, suggesting that the discrepancy of theory and
experiment is not funded in the inaccurate description of
the ions’ electronic structure.
Modeling of strong-field effects.—Once insufficiencies

in structure calculations are ruled out, the next to be
investigated are dynamical aspects of light-matter inter-
action. In Ref. [3] and in previous studies, it was implicitly
assumed that the intensity of the observed lines is propor-
tional to the oscillator strength. This holds true under the
assumption of a relatively weak exciting field. However,
nonlinearities are anticipated if the intensity I of the field is
comparable to or larger than the saturation intensity Isat, to
be defined below. For the Fe transitions studied, the large
dipole-moment matrix element leads to Isat ≈ 1011 W=cm2,
and, since the intensity of Linac Coherent Light Source
(LCLS) pulses is typically on or above this order of
magnitude, the exciting field cannot be considered as weak
anymore.
We, therefore, improve the physical description and

perform time-dependent simulations by modeling the ion
as a two-level system with ground state jgi and excited state
jei. The transition energy ωeg approximately equals 826 eV
and 812 eV for the 3C and 3D lines, respectively, and
the decay width is Γeg ¼ ℏAeg. We describe the atomic
system via the density matrix ρ̂ðtÞ of elements ρij, with
i; j ∈ fg; eg, whose evolution in time is given by the master
equation [33,34]

_̂ρ ¼ −
i
ℏ
½Ĥ; ρ̂ðtÞ� þ Lρ̂ðtÞ; ð3Þ

where the square brackets stand for a commutator, and the
Lindblad superoperator L represents the spontaneous decay
from the exited state jei to the ground state jgi with decay
rates equal to 2.22 × 1013 s−1 and 6.02 × 1012 s−1 for the
3C and the 3D transitions, respectively, according to our
CI-DFS calculations. The Hamiltonian Ĥ ¼ Ĥ0 þ Ĥint is
the sum of the electronic-structure Hamiltonian Ĥ0 ¼P

i∈fg;egℏωijiihij and of the Hamiltonian Ĥint describing
the interaction of the ion with an external time-dependent
electric field EðtÞ ¼ EðtÞ cos½ωXtþ ψðtÞ� of x-ray carrier
frequency ωX, envelope EðtÞ, and phase ψðtÞ. We introduce
the vector ~RðtÞ of the slowly varying components of the
density matrix,

~RðtÞ ¼ (ρggðtÞ; ρgeðtÞe−iωXt; ρegðtÞeiωXt; ρeeðtÞ)T; ð4Þ

such that Eq. (3) can be written in the matrix form
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_~RðtÞ ¼ MðtÞ~RðtÞ; ð5Þ

with the 4 × 4 time-dependent matrix

MðtÞ ¼

0
BBBBB@

0 −i Ω
�
RðtÞ
2

i ΩRðtÞ
2

Γeg

−i ΩRðtÞ
2

iΔ − Γeg

2
0 i ΩRðtÞ

2

i Ω
�
RðtÞ
2

0 −iΔ − Γeg

2
−i Ω

�
RðtÞ
2

0 i Ω
�
RðtÞ
2

−i ΩRðtÞ
2

−Γeg

1
CCCCCA:

The complex time-dependent Rabi frequency ΩRðtÞ ¼
eEðtÞhgjr̂jeieiψðtÞ=ℏ is proportional to the square root
of the x-ray intensity I and Δ ¼ ωeg − ωX denotes the
detuning of the laser frequency from the transition fre-
quency. For a continuous-wave driving field, EðtÞ ¼ Ē,
ψðtÞ ¼ 0, with correspondingly constant Rabi frequency
Ω̄R, the solution of the master equation (5) converges for
t → ∞ to the stationary solution [29,33]

R̄eeðΔÞ ¼
Ω̄2

R

4Δ2 þ Γ2
eg þ 2Ω̄2

R
: ð6Þ

The energy detected per unit time for given detuning is
IðΔÞ ∝ ΓegωegR̄eeðΔÞ, which can be used to calculate the
ratio of the intensities emitted by the two lines by means of
the integrals over the detuning Δ

S3C=S3D ¼
Z

dΔI3CðΔÞ
�Z

dΔI3DðΔÞ: ð7Þ

By introducing, for each line, the saturation intensity
Isat ¼ IΓ2

eg=ð2Ω̄2
RÞ, this leads to

S3C=S3D ¼ Γ3Cω
2
3D

Γ3Dω
2
3C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I=Isat;3D
1þ I=Isat;3C

s
: ð8Þ

For a weak exciting field (I ≪ Isat), this agrees with the
linear theory of resonance fluorescence predicting a ratio of
3.56, while in the strong-field limit (I ≫ Isat), Eq. (8)
converges to the value S3C=S3D → 7.03.
For a time-dependent (pulsed) driving field, the system

of differential equations (5) is solved assuming the initial
conditions ~R0 ¼ ð1; 0; 0; 0ÞT . Thereby, we can calculate the
total detected energy as a function of the detuning

EðΔÞ ∝ ΓRωeg

Z þ∞

−∞
ReeðtÞdt; ð9Þ

where ReeðtÞ also depends on Δ. This yields a spectrum
which can be compared to the experimentally measured
one. The ratio of total emitted line energies can, again, be
calculated as a ratio of the integrals over the detuning Δ

S3C=S3D ¼
Z

dΔE3CðΔÞ
�Z

dΔE3DðΔÞ: ð10Þ

In the experiment [3], the LCLS provided x-ray bunches
with up to 3 mJ total energy per shot. Although the pulse
parameters are not well known and are not fixed from pulse
to pulse because of their chaotic nature and loss in the
monochromator used, assuming a photon beam diameter
between 0.1 and 1 mm and pulse durations between 200
and 2000 fs, the intensities can be estimated to be in the
range of I ¼ 1011–1014 W=cm2. Also, not the total energy
emitted in all directions was detected in the experiment [3],
but only a fraction of it emitted into a given solid angle.
However, since the excited states have the same symmetry
(total angular momentum J ¼ 1) and the ground state of the
ion is spherically symmetric (J ¼ 0), the angular distribu-
tion of the emitted radiation is the same for both transitions,
allowing one to compare the strength ratio as defined above
with the experimentally determined line intensities.
Matching the experimental line strengths and discus-

sion.—In Fig. 1(b), simulated 3C and 3D fluorescence
lines are presented assuming strong XFEL pulses of
Gaussian shape for an intensity of I ¼ 1013 W=cm2 and
duration of T ¼ 200 fs. We use the pulse envelope EðtÞ ¼
Emaxe−ðt

2=T2Þ32 lnð2Þ and a constant phase ψðtÞ ¼ 0. The ratio
of the 3C and 3D line strengths is shown separately in
Fig. 2 as a function of the pulse parameters. The strengths
and their ratio are sensitive to the change of pulse intensity

FIG. 1 (color online). (a) Time envelope of a Gaussian and (c)
an incoherent pulse, in arbitrary units. (b), (d) The fluorescence
signal (total energy of fluorescence photons) as a function of the
XFEL photon energy in the energy range of the 3C and 3D
transitions in Fe16þ, in arbitrary units. Here, an x-ray intensity of
I ¼ 1013 W=cm2 was used and results are shown for (c) a
Gaussian pulse and (d) after averaging over 10 incoherent pulses
with a time duration of T ¼ 200 fs. For incoherent pulses, the
bandwidth is set to B ¼ 1 eV.
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and duration. Between I ¼ 1 − 6 × 1012 W=cm2 and for
T ¼ 200 fs, the resulting line-strength ratio is in the range
of 2.31–3.08, as presented in Fig. 2. This result is still in
agreement with the measured value of 2.61� 0.23. We also
infer that the pulse-by-pulse variation of intensity and
duration contributes to the experimental uncertainty of
the ratio. These results confirm the importance of strong-
field dynamical effects in a relatively intense XFEL field.
We note that, in this range of parameters, we are still in the
weakly nonlinear regime: below intensities of approximately
1011 W=cm2, the linear theory of resonance fluorescence
may be applied. (The linear model is also applicable for
transitions with significantly lower dipole matrix elements,
even if the intensity of the x-ray source is high.) At higher
intensities, or for longer pulses, which is also still in the
range of possible experimental parameters, the sensitivity to
the pulse parameters increases, resulting in an oscillation of
the line-strength ratio of the 3C and 3D lines between 5.5
and 6.5, in agreement with the previously mentioned
intensity-saturation effects. Increasing the pulse duration
in the simulations, one reaches the limit of continuous-wave
fields, which is shown by the dashed line [cf. Eq. (7)].
For an even more realistic modeling, we, additionally,

take into account the chaotic nature of XFEL pulses
generated via self-amplified spontaneous emission [35],
by modeling amplitude EðtÞ and phase ψðtÞ via the
partial-coherence method [36,37]. An understanding of
incoherence effects is not only relevant for laboratory
measurements, but also for astrophysical observations, as
natural x-ray sources lack coherence. In the simulations, we
employ a series of randomized pulses, an example of which
is shown in Fig. 1(c). Figure 1(d) presents the fluorescence
signal resulting from the use of such incoherent pulses,
while Fig. 3 displays the line-strength ratio (10) obtained
with chaotic pulses of different duration, intensity, and

bandwidth. Each point in Fig. 3 is obtained by averaging
over 10 independent realizations of a chaotic pulse. The
numerical uncertainty of the obtained results is estimated to
be ∼1%–2%. As in the case of Gaussian pulses, the line-
strength ratio clearly depends on the pulse parameters. Also
here, for low intensities, the value of 3.56 is approached, in
agreement with the linear theory of resonance fluorescence.
We notice that, for incoherent pulses, a decrease in the
3C=3D line-strength ratio can be observed within a wider
range of pulse intensities than for Gaussian pulses, as well
as for a significantly larger interval of pulse durations. As
shown in the picture, this effect becomes more significant at
increasing values of the bandwidth (i.e., the FWHM of the
energy spectrum) of the chaotic pulse, which, in the
experiment [3], can be estimated to be ∼1 eV. The decrease
in bandwidth (increase in coherence time) corresponds to a
more coherent pulse, and a behavior closer to that displayed
by fully coherent (transform-limited) Gaussian pulses.
As estimated before, intensities in [3] were in the range

of I ¼ 1011–1014 W=cm2. Most pulses had durations
corresponding to those of the curves in Fig. 2 and
Fig. 3. The use of a monochromator in [3] causes a
decrease in pulse peak intensities; we notice, however,
that the decrease in bandwidth B is shown in Fig. 3 to
require lower pulse intensities to obtain the same 3C=3D
line strength ratio. The predicted decrease in the 3C=3D
ratio within a broad interval of pulse intensities and
durations suggests that the observed unexpectedly low
laboratory value of the 3C=3D ratio is determined by
previously neglected nonlinear dynamical effects, thus,
depending on the precise XFEL parameters, either resolv-
ing or decreasing the discrepancy of state-of-the-art atomic
structure theories with the XFEL measurement [3]. This
implies for astrophysical studies that weak-field atomic
theory employing the best structure models is applicable for
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FIG. 2 (color online). The line-strength ratio S3C=S3D as a
function of the intensity and duration of the Gaussian pulse. The
dashed line is for a continuous wave field [Eq. (7)]. The gray
shaded area shows the experimental ratio 2.61(23) [3] together
with its error bar.
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astrophysical sources of low intensities, while previously
neglected strong-field dynamical effects have to be included
for sources in the regime of the saturation intensity or above.
In summary, we have demonstrated that higher-order

electron-correlation effects, considered so far [3] as the
most likely source of the discrepancy of atomic theory with
recent laboratory measurements, only marginally influence
the oscillator strengths of the 3C and 3D lines in Fe16þ ions.
The same holds for QED corrections. Instead, considering
intensity-dependent nonlinear effects, neglected so far, was
shown to be crucial. For accurately incorporating those
modifications, an improved experimental determination of
the XFEL parameters is called for because, for certain
realistic parameters within the possible range, here we could
explain the discrepancy [3] via those dynamical effects.
Approaching the saturation intensity, the weak-field atomic
theory employed so far is shown not to be applicable
anymore, which is equally valid for corresponding astro-
physical scenarios. For instance, in the accretion disk of
stellar-mass black holes in x-ray binaries [38], the Eddington
luminosity of ∼1038 erg=s at a distance close to the inner-
most stable orbit of three Schwarzschild radii leads to an
intensity of approximately 3 × 1013 W=cm2 for a line at
1 keV with a 1-eV width, requiring the inclusion of the
previously neglected nonlinear dynamics.

We acknowledge helpful advice from Ilya I. Tupitsyn
and insightful conversations with Alberto Benedetti.
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