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We derive and compute effective valence-space shell-model interactions from ab initio coupled-cluster
theory and apply them to open-shell and neutron-rich oxygen and carbon isotopes. Our shell-model
interactions are based on nucleon-nucleon and three-nucleon forces from chiral effective-field theory.
We compute the energies of ground and low-lying states, and find good agreement with experiment.
In particular, our computed 2þ states are consistent with N ¼ 14; 16 shell closures in 22;24O, and a weaker
N ¼ 14 shell closure in 20C. We find good agreement between our coupled-cluster effective-interaction
results with those obtained from standard single-reference coupled-cluster calculations for up to eight
valence neutrons.
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Introduction.—The nuclear shell model is the foundation
on which our understanding of nuclei is built. One of the
most important problems in nuclear structure today is to
understand how shell structure changes with neutron-to-
proton ratio throughout the nuclear chart. Shell structure
influences the locations of the neutron and proton drip lines
and the stability of matter. Examples of changes in shell
structure are the appearance of new magic numbersN ¼ 14
and N ¼ 16 in the neutron-rich oxygen isotopes [1,2], and
the emergence of an N ¼ 34 subshell closure in 54Ca [3–7].
Phenomenological shell-model Hamiltonians such as

the sd Hamiltonian of Brown and Wildenthal [8,9] (abbre-
viated USD) and the p-sd Hamiltonian of Warburton
and Brown [10] (abbreviated WBP), have successfully
described properties of nuclei with proton number Z and
neutron number N less than about 20. To understand the
origin of shell structure, however, researchers are now
trying to derive the shell model from realistic nucleon-
nucleon (NN) and three-nucleon forces (3NFs), without
further phenomenology [3,11,12]. Within the last few
years, for example, Otsuka et al. [12] showed that 3NFs
play a pivotal role in placing the drip line (correctly) in the
oxygen isotopes at 24O, and Holt et al. [3] showed that
inclusion of 3NFs can explain the high 2þ state in 48Ca.
Until recently, all work to compute effective shell-model

interactions was perturbative. Lately, however, nonpertur-
bative calculations have become possible. In Holt et al. [13]
core-polarization diagrams where summed to all orders,
others have been based on the ab initio no-core shell model
[14,15], via a valence-cluster expansion [16–18], and on
the in-medium similarity renormalization group [19]. In
this Letter we develop a new approach by using the ab initio
coupled-cluster method [20–25], to construct effective

shell-model interactions for use in open-shell and neutron-
rich nuclei. Starting from NN interactions and 3NFs
generated by chiral effective-field-theory, we compute
the ground- and excited-state energies of neutron-rich
carbon and oxygen isotopes with up to eight neutrons in
the valence space. Intense theoretical and experimental
interest surround the structure of both these isotope
chains, and particularly the neutron-rich carbon isotopes.
Separation energies, spin assignments for low-lying states,
the energies of 2þ states, and transition rates in these
isotopes all depend on the locations of shell gaps [26–33].
At present there is no evidence for a shell closure at the
N ¼ 14 nucleus 20C [34], despite the N ¼ 14 shell closure
at 22O. Furthermore, Efimov physics may be at play in 22C
[35,36]. This Letter takes the first steps towards an ab initio
shell-model description of the neutron-rich carbon isotopes,
and addresses the role of 3NFs in these isotopes.
Hamiltonian and model space.—Our coupled-cluster

calculations start from the intrinsic A-nucleon Hamiltonian,

Ĥ ¼
X

i<j

�ðpi − pjÞ2
2mA

þ V̂ði;jÞ
NN

�
þ

X

i<j<k

V̂ði;j;kÞ
3NF : ð1Þ

Here the intrinsic kinetic energy (the first term) depends on
the mass number A≡ Z þ N. The potential V̂NN denotes
the chiral NN interaction at next-to-next-to-next-to leading
order [37,38] (with cutoff Λ ¼ 500 MeV), and V̂3NF is the
3NF that enters at next-to-next-to leading order with a local
regulator [39] (with cutoff Λ3NF ¼ 400 MeV). The low-
energy constants of the 3NF are given by cE ¼ 0.098 and
cD ¼ −0.2. These were initially determined from a fit to the
triton half-life and binding energy with a cutoff Λ3NF ¼
500 MeV [40], and then, with Λ3NF ¼ 400 MeV, cE was
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readjusted to reproduce the 4He binding energy while cD
was kept fixed [41]. This introduces an inconsistency in the
choice of regulator cutoff, but it has been shown [41–43]
that with this cutoff, calculated binding energies agree
rather well with data in the mass region we consider in this
Letter. To achieve faster model-space convergence, we use
the similarity renormalization group (SRG) to evolve V̂NN
and V̂3NF to the lower momentum scale λSRG ¼ 2.0 fm−1

[44]. Many recent papers [41–43] have shown that this
Hamiltonian reproduces binding energies of oxygen iso-
topes rather well; they vary by 1%–2% with variation of
λSRG. However, this Hamiltonian has been shown to over-
bind for nuclei heavier than oxygen isotopes. Recent lattice
nuclear effective field theory calculations [45] have shown
that this overbinding might be due to a resolution scale that
is too small, leading to interactions that are too soft in
heavier nuclei. For the coupled-cluster calculations we used
a Hartree-Fock basis built from Nmax þ 1 ¼ 13 major
harmonic-oscillator orbitals (Nmax ¼ 2nþ l) with frequency
ℏω ¼ 20 MeV. We limit the number of 3NF matrix ele-
ments through the additional cut E3max ¼ N1 þ N2þ
N3 ≤ 14, where Ni ¼ 2ni þ li. The resulting model-space
is sufficient to obtainwell converged results for energies of the
states reported in this Letter. We use the normal-ordered two-
body approximation for the 3NF [41,46], which has been
shown to work well in light- and medium-mass nuclei [41].
Formalism.—To derive an effective shell-model

Hamiltonian in a valence space from ab initio coupled-
cluster theory, we use the valence-cluster expansion first
applied in the no-core shell model [17,47]. We expand the
Hamiltonian in Eq. (1) in a form suitable for the shell model:

HA
CCEI ¼ HA;Ac

0 þHA;Acþ1
1 þHA;Acþ2

2 þ � � � ; ð2Þ

where CCEI stands for coupled-cluster effective interaction,
A is the mass of the nucleus we wish to treat, and Ac is the
mass of the nucleus with a closed core below the valence
space. In Eq. (2), HA;Ac

0 is the Hamiltonian for the core,
HA;Acþ1

1 is the valence one-body Hamiltonian, andHA;Acþ2
2 is

the additional two-body piece. In this work we limit
ourselves to one- and two-body terms in the valence-space
shell-model Hamiltonian. To solve for the ground state of
the core nucleus Ac we use the coupled-cluster method in
the singles-and-doubles approximation (CCSD) with the
Λ-triples correction treated perturbatively [Λ-CCSDðTÞ]
[48,49]. To obtain the ground and excited states for the
Ac þ 1 and Ac þ 2 nuclei we use particle-attached and two-
particle attached equation-of-motion (EOM) coupled-cluster
methods [50–52]. For the particle-attached EOMwe truncate
at one-particle and two-particle-one-hole excitations, and for
the two-particle attached EOM we truncate at two-particle
and three-particle-one-hole excitations. In coupled-cluster
theory the basic ingredient is the similarity-transformed
Hamiltonian H̄¼e−THeT , which is inherently non-
Hermitian [53], thus we need to solve for the left and right
eigenstates to obtain a complete bi-orthogonal set of states.

From the left and right eigenstates we can write Eq. (2) in a
spectral representation.
The valence-space representation of Eq. (2) consists of a

core energy term [which we compute from HA;Ac
0 using

Λ-CCSDðTÞ], a one-body term (built from the particle-
attached eigenvalues ofHA;Acþ1

1 ), and a two-body term. The
two-body term is computed using the Okubo-Lee-Suzuki
similarity transformation [54–57] by projecting the two-
particle attached EOM eigenstates onto two-body valence-
space states. The Okubo-Lee-Suzuki projection of HA;Acþ2

2

onto the model space is [47,57]

hαPjHA
eff jαP0 i ¼

Xd

k¼1

hαPjRA;Acþ2
k iekhαP0 jRA;Acþ2

k i: ð3Þ

Here the jRA;Acþ2
k i are the two-particle attached EOM

eigenstates with eigenvalue ek for Ac þ 2 (with mass A
of the target nucleus in the kinetic energy), jαPi are the
model-space states, the sum is over the k two-particle
attached eigenstates that have the largest overlap with the
model space. The hαPjRA;Acþ2

k i are the matrix elements of

the operatorX. hαP0 jRA;Acþ2
k i denote the matrix elements of

the inverse of X. To obtain the effective two-body shell-
model interaction, we subtract the one-body part from
Eq. (3) to avoid double counting.
Note that we could also construct an effective

Hamiltonian using the corresponding left eigenvectors.
This introduces an ambiguity in the construction of HA

eff .
We have verified, however, that in this work the matrix
elements of the effective operator are almost identical for
either choice. The effective Hamiltonian in Eq. (3) is not
Hermitian. Current shell-model codes require Hermitian
matrices. To obtain a Hermitian representation of the
effective shell-model Hamiltonian we construct the metric
operator S†S where S is a matrix that diagonalizes HA

CCEI;
the Hermitian shell-model Hamiltonian is then
½S†S�1=2HA

CCEI½S†S�−1=2 [47,58].
Results.—Here we report our CCEI results for ground

and low-lying states in oxygen and carbon isotopes. We
choose 16O in oxygen and 14C in carbon as the closed-shell
cores. We then project the one- and two-particle attached
coupled-cluster wave functions onto the one- and two-
particle model space states in the valence space—the d5=2,
s1=2, d3=2 shell—and proceed to use the resulting shell-
model Hamiltonians in heavier isotopes.
We would like to gauge the accuracy of our CCEI

approach by comparing with full Λ-CCSDðTÞ calculations,
the results of which we refer to as reference values.
Λ-CCSDðTÞ is known to be accurate to within 1% [45].
Figure 1 shows the ground-state energies of all oxygen
isotopes 16–25O computed with the CCEI (red squares),
experimental ground-state energies (black circles), and the
Λ-CCSDðTÞ ground-state energies in 16–18;21–25O. Our
Λ-CCSDðTÞ calculations use the model space mentioned
earlier, while the calculations that determine our CCEI use
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Nmax ¼ 12 and N1 þ N2 þ N3 ¼ 12. We believe that our
CCEI results are converged to within ∼100 keV, but
increasing with the number of nucleons. Both our
Λ-CCSDðTÞ and CCEI results are in rather good agreement
with experimental binding energies. Our CCEI and
Λ-CCSDðTÞ calculations also agree well with a variety
of recent calculations in the oxygen isotopes that start with
the same Hamiltonian [42,43].
If we look more closely, we see that the reference

Λ-CCSDðTÞ results in 21;22O are in excellent agreement
with our CCEI results. In 23–25O the CCEI results start to
deviate from the Λ-CCSDðTÞ reference values. In 24O the
CCEI ground state is about 3.5 MeV less bound than
the Λ-CCSDðTÞ result, which amounts to roughly 2% of
the total binding energy. In 25O the difference increases to
about 3%. The difference indicates that effective three-body
interactions induced by the Okubo-Lee-Suzuki transfor-
mation (which we neglect) start to play a role in the CCEI
approach when the number of valence nucleons gets too
large. The problem can be remedied by including these
interactions or by increasing the valence-space size [17].
Next, we compare low-lying CCEI excited-state energies

in 22O and 24O with an EOM coupled-cluster calculation
that includes single and double excitations [59]. EOM-
CCSD can accurately describe low-lying states that are
dominated by one-particle-one-hole excitations [53], and
we therefore choose those states for comparison. In 22O
we obtain low-lying 2þ and 3þ states with 2.5 MeV and
3.5 MeVof excitation energy. The CCEI result for the same
states is 2.7 MeV and 4.0 MeV, though the CCEI result
for the 3þ state in 22O is not yet converged; it moves down
by ∼150 keV when we increase the model space size from
Nmax ¼ 10 to Nmax ¼ 12 oscillator shells. The 2þ state
changes only by ∼5 keV indicating that it, by contrast,
is well converged. In 24O, the 2þ state is found by

EOM-CCSD at 6.0 MeV, while CCEI finds the same state
at 5.7 MeV, a difference of about 5%. We observe that the
differences in excitation energies between EOM-CCSD and
CCEI remain small even though the difference in total
binding energy increases significantly around 24O. All in all
we estimate the total uncertainty in the excitation energies
to be no more than 10%, based on the numbers presented
above. Finally, we note that in our CCEI calculations,
correlations between all particles in the valence space
are treated exactly. Therefore, we expect to see some
differences in the computed spectra using EOM-CCSD
and CCEI. For example, in CCEI we are able to compute
the second 0þ state in 22O which is dominated by two-
particle-two-hole excitations from the ground state. On the
other hand this state is poorly described by EOM-CCSD.
We turn now to carbon. The Λ-CCSDðTÞ ground-state

energies of 14;15;16C are −104.0 MeV, −104.2 MeV, and
−106.6 MeV, respectively. In 14C the result agrees well
with the experimental ground-state energy of −105.3 MeV,
but for 15;16C our particle-attached and two-particle
attached EOM results are 2.3 MeV and 4.2 MeV under-
bound with respect to experimental data. The underbinding
persists throughout the chain of carbon isotopes in our
CCEI calculations.
Figures 2 and 3 summarize our CCEI results for the

excited states in 19–24O and 17–22C, respectively. For the first
2þ states we also show the 10% conservative error estimate.
Our results are overall in rather good agreement with
experiment. Without any adjustment of parameters we
obtain spectra that are qualitatively similar to those pro-
duced by the phenomenological USD (WBP) Hamiltonian
for oxygen (carbon) isotopes. Our 2þ energy at 2.78 MeV
in 22O and at 5.73 MeV in 24O are consistent with a N ¼ 14
subshell and aN ¼ 16 shell closure in oxygen. On the other
hand, the 2þ energy at 1.72 MeV in 20C is consistent with a
weaker N ¼ 14 subshell closure in carbon.
In the odd isotopes 17;19;21C we get the 1=2þ state in the

wrong position. Our calculations, however, rely on an under-
lying harmonic-oscillator basis and therefore do not account
for the particle continuum. The 1=2þ state is dominated by
s-waves and is located close to the particle emission threshold,
where continuum effects are obviously important [5,60]. The
3=2þ and the 5=2þ states are dominated by d-waves, which
couple somewhat less to the continuum because of the l ¼ 2
centrifugal barrier [60]. Overall, we expect continuum effects
to be quite significant for the 17;19;21C isotopes. Preliminary
calculations within the no-core shell model with continuum
[61] for 17C,with the same chiralNN þ 3NF interaction used
here, show that the 1=2þ state (unbound in our calculation)
gains about 2MeVin energy andbecomes bound.At the same
time, the 3=2þ and 5=2þ states are lowered in energy bymore
than 1MeV.We anticipate similar or even stronger continuum
effects in 19Cand 21C; thesewouldmost likelymake the1=2þ
states the ground states, as they are in reality.
Summary.—We have used coupled cluster theory to

derive shell-model Hamiltonians that depend on no
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FIG. 1 (color online). Ground-state energies of oxygen iso-
topes. Black circles show the experimental values, blue diamonds
the Λ-CCSDðTÞ results, and the red squares the CCEI results for
the ground-state energies.
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parameters other than those in the initial chiral NN
interaction and 3NF. We have reproduced ground- and
excited-state energies with good accuracy in carbon and
oxygen isotopes. The results demonstrate both the pre-
dictive power of Hamiltonians from chiral effective field
theory and the accuracy of the coupled cluster framework.
Finally, our shell-model calculations can and will be
systematically improved (e.g., by including induced
three-body interactions), extended to include effective

operators other than the Hamiltonian, and applied to
heavier nuclei, where accurate phenomenological
Hamiltonians are harder to obtain.
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FIG. 2 (color online). Excitation spectra of neutron-rich oxygen
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neutron decay thresholds, and the shaded area centered around
the first 2þ states show the 10% error estimate discussed in
the text.
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Note added.—Very recently Bogner et al. [62] applied the
in-medium similarity-renormalization-group method to
construct nonperturbative shell-model interactions and
applied it to neutron-rich oxygen isotopes.
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