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We present the first ab initio construction of valence-spaceHamiltonians formedium-mass nuclei based on
chiral two- and three-nucleon interactions using the in-medium similarity renormalization group. When
applied to the oxygen isotopes, we find experimental ground-state energies arewell reproduced, including the
flat trend beyond the drip line at 24O. Similarly, natural-parity spectra in 21;22;23;24O are in agreement with
experiment, and we present predictions for excited states in 25;26O. The results exhibit a weak dependence on
the harmonic-oscillator basis parameter and reproduce spectroscopy within the standard sd valence space.
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With the next generation of rare-isotope beam facilities,
the quest to discover and understand the properties of exotic
nuclei from first principles is a fundamental challenge for
nuclear theory. This challenge is complicated in part because
the proper inclusion of three-nucleon (3N) forces plays a
decisive role in determining the structure of medium-mass
nuclei [1,2]. While ab initio many-body methods based on
nuclear forces from chiral effective field theory [3–5] have
now reached the medium-mass region and beyond [6–20],
restrictions in the nuclei and observables accessible to these
methods have limited their application primarily to ground-
state properties in semimagic isotopic chains.
For open-shell systems, rather than solving the fullA-body

problem, it is profitable to follow the shell-model paradigm
by constructing and diagonalizing an effective Hamiltonian
in which the active degrees of freedom are Av valence nu-
cleons confined to a few orbitals near the Fermi level. Both
phenomenological and microscopic implementations of the
shell model have been used with success to understand and
predict the evolution of shell structure, properties of ground
and excited states, and electroweak transitions [21–23].
Recent microscopic shell-model studies have revealed the

impact of 3N forces in predicting ground- and excited-state
properties in neutron- and proton-rich nuclei [1,2,24–28].
Despite the novel insights gained from these studies, they
make approximations which are difficult to benchmark.
The microscopic derivation of the effective valence-space
Hamiltonian relies on many-body perturbation theory
(MBPT) [29], where order-by-order convergence is unclear.
Even with efforts to calculate particular classes of diagrams
nonperturbatively [30], results are sensitive to the harmonic-
oscillator (HO) frequency ℏω (due to the core), and the
choice of valence space [2,24,25]. A nonperturbative
method to address these issues was developed in

Refs. [31,32], which generates valence-space interactions
and operators by projecting their full no-core shell model
(NCSM) counterparts into a given valence space.
To overcome these limitations in heavier systems, the in-

medium similarity renormalization group (IM-SRG), origi-
nally developed for ab initio calculations of ground states in
closed-shell systems [33], can be extended to derive effective
valence-space Hamiltonians and operators nonperturba-
tively. Calculations without initial 3N forces [34] indicated
that an ab initio description of ground and excited states for
open-shell nuclei may be possible with this approach. In this
Letter, we apply the IM-SRG starting from chiral nucleon-
nucleon (NN) and 3N forces to the more challenging and
physically interesting problem of the oxygen isotopes.
The IM-SRG is a continuous unitary transformation

UðsÞ, parameterized by a flow parameter s, that drives the
Hamiltonian to a band-or block-diagonal form [35]. This is
accomplished by solving the flow equation

dHðsÞ
ds

¼ ½ηðsÞ; HðsÞ�; ð1Þ

where ηðsÞ≡ ½dUðsÞ=ds�U†ðsÞ is the anti-Hermitian gen-
erator of the transformation. With a suitable choice of ηðsÞ,
the off-diagonal part of the Hamiltonian, HodðsÞ, is driven
to zero as s approaches∞. The “in-medium” label indicates
that we control the proliferation of induced many-body
operators by normal ordering the Hamiltonian with respect
to a finite-density reference state for each system of
interest. We truncate Eq. (1) to normal-ordered two-body
operators, which we refer to as the IM-SRG(2) approxi-
mation. Initial results for 6Li agreed well with the NCSM
[34], and a quantitative comparison with the importance-
truncated NCSM [36] is underway.
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The utility of the IM-SRG lies in the freedom to tailor
the definition of Hod to a specific problem. For instance, to
construct a shell-model Hamiltonian for a nucleus com-
prised of Av valence nucleons outside a closed core, we
define a Hartree-Fock (HF) reference state jΦi for the core
with Ac particles, and split the single-particle basis into hole
(h), valence (v), and nonvalence (q) particle states. Treating
allA nucleons as active, we eliminatematrix elements which
couple jΦi to excitations, just as in IM-SRG ground-state
calculations [13,14,33]. In addition, we decouple states
with Av particles in the valence space, ∶a†v1…a†vAv∶jΦi,
from states containing nonvalence states.
Normal-ordering the Hamiltonian with respect to jΦi

and working in the IM-SRG(2) truncation

HðsÞ ¼ E0 þ
X

ij

fij∶a†i aj∶þ
1

4

X

ijkl

Γijkl∶a†i a
†
jalak∶; ð2Þ

we define [34]

fHodg¼ffph; fpp0 ; fhh0 ;Γpp0hh0 ;Γpp0vh;Γpqvv0gþH:c:

ð3Þ

and use the White generator defined in Refs. [13,33,34].
With this choice of generator, Hodð∞Þ → 0, and the shell-
model Hamiltonian is obtained by taking all valence-space
matrix elements.
We start from the chiral next-to-next-to-next-to-leading

order (N3LO) NN interaction of Refs. [4,37], with cutoff
ΛNN ¼ 500 MeV and apply a free-space SRG evolution
to lower the momentum resolution scale, λSRG. The
NNþ 3N-induced Hamiltonian consistently includes
three-nucleon forces induced by the evolution. Results for
this interaction correspond to the unevolved NN interaction,
up to truncated induced 4N;…; AN forces [38,39]. The
NNþ 3N-full Hamiltonians also include an initial local
chiral 3N interaction at order N2LO [40], consistently
evolved to λSRG. We consider two cutoffs for the initial
3N interaction, Λ3N ¼ 400; 500 MeV. The latter is naively
consistent with ΛNN, although the NN interaction uses
nonlocal regulators. Because of the reduced cutoff, the
former avoids induced 4N interactions as λSRG is lowered
[10,41]. The Hamiltonian has 27 low-energy constants in
the NN interaction plus two from the 3N interaction, which
are fit to properties of few-body systems only, thereby pro-
viding predictionswhen applied to themedium-mass region.
The SRG-evolved Hamiltonians are transformed to an

angular-momentum-coupled basis built from single-particle
HO states with quantum numbers e ¼ 2nþ l ≤ emax.
An additional cut e1 þ e2 þ e3 ≤ E3max < 3emax is intro-
duced to manage storage of the 3N matrix elements.
We use E3max ¼ 14, which for resolution scales λSRG ¼
1.88–2.24 fm−1 contributes less than 1% to the uncertainty
of ground-state energies [10,12–14,18].
We first solve the HF equations for the 16O core using the

intrinsic kinetic energy,

T int ¼ T − Tc:m: ¼
�
1 −

1

A

�X

i

p2i
2m

−
1

Am

X

i<j

pi · pj; ð4Þ

with A being the particle number of the target nucleus to
account for the change of the single-particle wave functions
as Ac → A [42]. The Hamiltonian is then normal ordered
with respect to the core’s HF reference state, and the resulting
in-medium zero-, one-, and two-body operators serve as the
initial values for the IM-SRG flow equations. The residual
three-body term is neglected, giving rise to the normal-
ordered two-body (NO2B) approximation [7,10,12]. The
one- and two-bodyparts of the fully decoupledvalence-space
Hamiltonian are taken as the single-particle energies (SPEs)
and two-body matrix elements to be diagonalized in a
standard shell-model calculation, in the sd valence space
above an inert 16O core.
Of interest is the ℏω dependence of the spectra, since ℏω

is adjusted to the core in phenomenological shell-model
calculations. We illustrate the effect of varying ℏω from
20 MeV to 24 MeV by shaded bands in all plots. Since this
variation probes the convergence of the calculation and is
mainly governed by λSRG rather than the input Hamiltonian,
we only show bands for the NNþ 3N-full Hamiltonians.
Finally, coupling to the continuum is relevant in neutron-rich
oxygen isotopes [8,43], and we will include these effects in
future work. We indicate in all spectra the location of the
neutron-separation threshold to highlight the energy region
where the continuum is expected to become important.
The IM-SRG SPEs are given in Table I. We compare to

SPEs calculated in MBPT, from softened N3LO NN and refit
N2LO 3N interactions [1,2,38], and from the phenomenologi-
cal USDb interaction [44]. The NN case, where the
IM-SRG SPEs are significantly overbound, requires induced
3N forces to improve the description. For NNþ 3N-full
Hamiltonians, the Λ3N ¼ 400 MeV SPEs are comparable to
MBPTandphenomenology,while thosefromΛ3N¼500MeV
are more deeply bound. The d5=2-d3=2 gap is approximately
2 MeV (4 MeV for Λ3N ¼ 500 MeV) larger in IM-SRG,
pointing to a stronger spin-orbit component than in MBPT.
Because of the deeply bound SPEs for Λ3N ¼

500 MeV, excited states lie 1.0–1.5 MeV higher in energy
than for Λ3N ¼ 400 MeV. This variation should be
regarded only as a first step towards estimating the
uncertainty, since it conflates uncertainties from the input
Hamiltonian with those from the evolution to λSRG. For
Λ3N ¼ 400 MeV, these uncertainties are controlled, and we
can directly confront the input chiral Hamiltonian with

TABLE I. IM-SRG sd-shell SPEs (in MeV) for λSRG ¼
1.88 fm−1 and ℏω ¼ 24 MeV, compared with MBPT [24]
(NNþ 3N, see text) and phenomenological USDb values [44].

Orbit NN NNþ 3N-ind.
NNþ 3N-full

MBPT USDb400 MeV 500 MeV

d5=2 −7.07 −3.77 −4.62 −7.14 −3.78 −3.93
s1=2 −5.80 −2.46 −2.96 −4.42 −2.42 −3.21
d3=2 1.81 2.33 3.17 2.85 1.45 2.11
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experiment [12–14,18,41]. For this reason, we only discuss
the spectra for this Hamiltonian in detail in the following.
The importance of 3N forces in determining the oxygen

dripline was first highlighted in microscopic valence-space
calculations [1,24,45], then in ab initio studies [8,14,15].
The evolution of the IM-SRG SPEs with the neutron
number [Fig. 1(a)] reveals the same mechanism: in the
NNþ 3N-induced case, the d3=2 orbit remains bound past
20O. The repulsive effects of 3N forces shift the d3=2 orbit
to a higher starting point of 3.17 MeV in 17O, while
moderating its decrease to neutron-rich isotopes, where it is
bound by only 160 keV in 24O.
We diagonalize the A-dependent IM-SRG valence-space

Hamiltonian to obtain the ground-state energies of 18–28O,
shown in Fig. 1(b), which include the IM-SRG-calculated
core energy. For an SRG-evolved NN interaction, the oxygen
isotopes are overbound due to neglected initial and induced
3N forces, leading to unrealistic predictions. Including
induced 3N forces lessens the overbinding, but fails to give
the correct trend past 24O. With initial 3N forces, agreement
with experimental data is further improved, with moderate
overbinding past 22O. Moreover, the flat trend of the ground-
state energies beyond 24O is similar to experimental data in
25;26O [45–47] and agrees with other calculations based on
chiral NNþ 3N forces [1,8,15,24]. We note that 25–28O are
weakly bound with respect to 24O. Finally, Λ3N ¼ 500 MeV
ground-state energies are overbound with more pronounced
λSRG dependence. For instance in 22;24;28O, energies increase,
respectively, to−202.18MeV,−215.42MeV,−219.94MeV
for λSRG ¼ 1.88 fm−1 and −193.31 MeV, −204.30 MeV,
−206.85 MeV for λSRG ¼ 2.24 fm−1.
In contrast, the multireference IM-SRG (MR-IM-SRG)

[14] gives a robust prediction of the dripline at 24O for the
NNþ 3N-full Hamiltonians, with ground-state energies in
good agreement with experimental data and other ab initio
methods [14]. The MR-IM-SRG evolution is carried out in
the target nucleus rather than in the corewith shiftedA, so its
open-shell reference state accounts for wave-function relax-
ation effects and the presence of nucleons in the valence
space during the evolution. Therefore differences like the
observed< 2% are to be expected.Wewill revisit the issue of

overbinding by using 22O and 24O cores and compare these
results with MR-IM-SRG calculations of excited states.
In Fig. 1(b), we highlight the insensitivity of the

ground-state energies to variation of ℏω from 20 MeV
to 24 MeV in the band for the NNþ 3N-full Hamiltonian.
Differences only become non-negligible for A > 24. The
weak dependence of calculated observables on ℏω is a
striking feature of the nonperturbative IM-SRG valence-
space approach, implying a remarkable level of conver-
gence at the IM-SRG(2) level.
Turning to excitation spectra, since NN forces give a

reasonable description of low-lying spectra near 16O [29],
we focus on the region of the new N ¼ 14; 16 magic
numbers, and the limit of stability by considering 21–26O.
As shown in Ref. [24], microscopic valence-space
Hamiltonians from MBPT, calculated in the standard sd
shell, do not adequately reproduce experimental data,
even with 3N forces. With the inclusion of the f7=2 and
p3=2 orbitals, spectroscopy improves, indicating that a
perturbative treatment of these orbitals may be insufficient.
Given the nonperturbative character of IM-SRG, we expect
similar improvements already in the sd shell.
We first consider the spectrum of 21O in Fig. 2. While no

calculation fully reproduces experiment, MBPT and IM-
SRG correctly predict the ordering of the first two excited
states with an initial 3N force, but the 1=2þ level lies too
low in MBPT and too high in IM-SRG. Since the MBPT
results are obtained with a softened N3LO interaction with
a refit 3N interaction [1,2], disagreements are both due to
the different input Hamiltonians and the nonperturbative
IM-SRG approach. We note that the tentative 7=2þ and
5=2þ assignments are reproduced in both calculations, but
the ordering is reversed in IM-SRG compared to MBPT.
The calculated IM-SRG spectra of 22O are compared

with MBPT [24] and experiment [48,49] in Fig. 3. Without
initial 3N forces, the spectrum is too compressed. The 2þ1
state, in particular, is 1.0 MeV too low, contradicting the
doubly magic nature of 22O. Unlike MBPT or the phe-
nomenological USDb Hamiltonian, the IM-SRG reprodu-
ces the correct ordering of the 3þ1 and 0þ2 states. Inclusion of
initial 3N forces leads to significant improvement, and the
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FIG. 1 (color online). Single-particle energy evolution (a) and ground-state energies (b) for the indicated A-dependent Hamiltonians
with λSRG ¼ 1.88 fm−1. The range of NNþ 3N-full (Λ3N ¼ 400 MeV) results for ℏω ¼ 20; 24 MeV is given by the shaded bands.
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final spectrum is very close to experiment. The extended-
space MBPT calculations reproduce the high 2þ1 state but
have too uniform spacing and incorrect 3þ1 -0

þ
2 ordering.

There are no bound excited states in 23O, only two higher-
lying states, tentatively identified as 5=2þ and 3=2þ, indicat-
ing the sizes of the d5=2-s1=2 and d3=2-s1=2 gaps, respectively
[50,51]. We show the calculated and experimental spectra in
Fig. 4. Again, the IM-SRG does not reproduce this spectrum
without initial 3N forces: the 5=2þ state is nearly 1 MeV too
low, but the 5=2þ-3=2þ gap is close to experiment. Similar to
MBPT with initial 3N forces, the 5=2þ energy is almost
exactly that of experiment, only the 3=2þ state is 1 MeV too
high. Because of its position 2 MeV above threshold, it is
expected that continuum effects will lower this state, bringing
it closer to the experimental value.
As expected from the high 3=2þ state in 23O, we also

predict 24O to be doubly magic, but with a 2þ1 energy

1.2 MeV higher than experiment, as seen in Fig. 5.
Nonetheless, the 2þ-1þ spacing is very close to experiment,
and with continuum effects included, these states will be
lowered. Finally, we present predictions for excited-state
energies in the unbound 25;26O isotopes. We again find
large 1=2þ and 5=2þ excitation energies in 25O, which are
expected to decrease with continuum coupling. In 26O, we
predict one low-lying state below 6 MeV: a 2þ near 2 MeV.
A tentative identification of an excited state near 4 MeV
was reported in Ref. [45], but no such natural-parity state
was found in our calculations.
We have presented the first ab initio construction of a

nonperturbative sd-shell Hamiltonian based on chiral NN
and 3N forces. The SPEs and two-body matrix elements are
well converged with respect to basis size and exhibit weak
ℏω dependence. Furthermore, a good description of ground
and excited states is found throughout the oxygen isotopes in
a valence space consisting of only the sd-shell orbits. This
provides the exciting possibility to extend these calculations
to nearby F, Ne, and Mg isotopic chains and through
extending the valence space, will give access to the
island-of-inversion region and potentially the full sd-shell
neutron dripline.
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