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We use large-scale lattice simulations to compute the rate of baryon number violating processes (the
sphaleron rate), the Higgs field expectation value, and the critical temperature in the standard model across
the electroweak phase transition temperature. While there is no true phase transition between the high-
temperature symmetric phase and the low-temperature broken phase, the crossover is sharp and located at
temperature Tc ¼ ð159.5� 1.5Þ GeV. The sphaleron rate in the symmetric phase (T > Tc) is
Γ=T4 ¼ ð18� 3Þα5W , and in the broken phase in the physically interesting temperature range 130 GeV <
T < Tc it can be parametrized as logðΓ=T4Þ ¼ ð0.83� 0.01ÞT=GeV − ð147.7� 1.9Þ. The freeze-out
temperature in the early Universe, where the Hubble rate wins over the baryon number violation rate, is
T� ¼ ð131.7� 2.3Þ GeV. These values, beyond being intrinsic properties of the standard model, are
relevant for, e.g., low-scale leptogenesis scenarios.
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Introduction.—The current results from the LHC are in
complete agreement with the standard model of particle
physics: a Higgs boson with the mass of 125–126 GeV has
been discovered [1], and no evidence of exotic physics has
been observed. If the standard model is indeed the complete
description of the physics at the electroweak scale, the
electroweak symmetry-breaking transition in the early
Universe was a smooth crossover from the symmetric
phase at T > Tc, where the (expectation value of the)
Higgs field was approximately zero, to the broken
phase at T < Tc GeV where it is finite, reaching the
experimentally determined value hjϕji≃ 246=

ffiffiffi
2

p
GeV

at zero temperature. The detailed physics of the transition
is nonperturbative due to the infrared problems inherent
in high-temperature gauge field theory. The nature
of the transition was settled in 1995–1998 using lattice
simulations [2–5], which indicate a first-order phase
transition at Higgs boson masses ≲72 GeV and a
crossover otherwise. This scenario was also suggested
by analytical computations of nonperturbative effects at
the transition [6,7].
A smooth crossover means that the standard “electro-

weak baryogenesis” scenarios [8,9] are ineffective. These
scenarios produce the matter-antimatter asymmetry of the
Universe through electroweak physics only, and they
require a strong first-order phase transition, with super-
cooling and associated out-of-equilibrium dynamics. Thus,
the origin of the baryon asymmetry must rely on physics
beyond the standard model.
Baryogenesis at the electroweak scale is possible in the

first place through the existence of the chiral anomaly
relating the baryon number of fermions to the topological
Chern-Simons number Ncs of the electroweak SU(2) gauge
fields

ΔNcsðtÞ ¼
1

32π2

Z
t

0

dt0
Z

d3xϵμνρσTrFμνFρσ; ð1Þ

where Fμν is the SU(2) field strength [10]. A net change
over time of Chern-Simons number leads to a net change in
baryon number B (and lepton number L),

BðtÞ − Bð0Þ ¼ LðtÞ − Lð0Þ ¼ 3½NcsðtÞ − Ncsð0Þ�: ð2Þ
The question is then whether such a permanent change can
be achieved through the dynamics around the electroweak
transition, either from a symmetric initial state, such as that
for electroweak baryogenesis, or when it is sourced by
another mechanism such as leptogenesis [11], where an
initial lepton asymmetry is converted into a baryon
asymmetry.
Close to thermal equilibrium, the evolution of the Chern-

Simons number is diffusive and can be described through
the diffusion constant

Γ ¼ lim
V;t→∞

h½NcsðtÞ − Ncsð0Þ�2i
Vt

; ð3Þ

also known as the “sphaleron rate.” It enters the diffusion
equation for lepton and baryon number in baryogenesis
[12] and leptogenesis (see for instance, Ref. [13]).
The quantity Γ has been the focus of extensive work for

many years, and a powerful framework and set of analytic
and numerical tools have been developed to compute it
accurately using nonperturbative lattice simulations (see
Ref. [14] and references therein). Until very recently, the
precise value of the Higgs mass has not been available,
although extrapolation of computations at other values of
this mass is possible [13]. It seems a fitting conclusion to
this scientific effort to now employ all the available

PRL 113, 141602 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

3 OCTOBER 2014

0031-9007=14=113(14)=141602(5) 141602-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.141602
http://dx.doi.org/10.1103/PhysRevLett.113.141602
http://dx.doi.org/10.1103/PhysRevLett.113.141602
http://dx.doi.org/10.1103/PhysRevLett.113.141602


techniques and finally compute the sphaleron rate of the
complete minimal standard model. This will also point
forward to similar computations of the rate in extensions of
the standard model where the electroweak transition can be
strongly first order (SMþ scalar singlet model, two-Higgs
doublet models, supersymmetric models).
Simulation method.—We will restrict ourselves to a brief

summary of the methods and techniques used and refer the
reader to detailed information in the literature (Ref. [14]
and references therein). The full standard model is not
directly amenable to lattice simulations. However, at high
temperatures the modes corresponding to scales ≥ gWT,
including all fermionic modes, can be reliably treated with
perturbative methods. The nonperturbative infrared
(k≲ g2WT) physics of the standard model is fully contained
in an effective three-dimensional theory, which includes the
Higgs field and the spatial SU(2) gauge field [15]

S ¼
Z

d3x

�
1

4
Fa
ijF

a
ij þ jDiϕj2 þm2

3jϕj2 þ λ3jϕj4
�
: ð4Þ

The coefficients m2
3, g

2
3, and λ3 are functions of the four-

dimensional continuum parameters [αSðMWÞ, GF, MHiggs,
MW , MZ, Mtop, and the temperature T] through a set
of 1- and 2-loop matching relations [15] and are shown in
Fig. 1 as functions of the temperature.
We do not include the hypercharge U(1) field explicitly

in the effective theory Eq. (4) because it has little effect on
the infrared physics [16,17], but we take it into account in
our final error analysis. Naturally, the U(1) field and the
weak mixing angle do contribute to the values of the
parameters of Eq. (4).
The effective action is bosonic and easily discretized

on the lattice. The parameters of the lattice action are

perturbatively related to the continuum action [18]; we also
implement the partial OðaÞ improvement of Ref. [19]. The
effective action Eq. (4) has been very successfully used in
calculations of static thermodynamic properties of the
standard model, but with unphysical Higgs boson masses
[2–4].
For the measurement of the sphaleron rate it is necessary

to evolve the system in real time. As such, the effective
theory in Eq. (4) does not describe dynamical phenomena.
However, the infrared (k≲ g2WT) modes have large occu-
pation numbers and behave nearly classically. Thus, one is
well motivated to apply classical equations of motion to
Eq. (4) (after introducing canonical momenta). This method
has been used in early studies of the sphaleron rate [20,21].
However, it has serious problems: because of the UV
divergent Landau damping in the classical theory, the
simulation results are lattice spacing dependent and the
continuum limit does not exist [22,23]. These problems can
be partially ameliorated by using more complicated effec-
tive theories that include so-called hard thermal loop effects
[24], but the continuum limit is still out of reach.
A particularly attractive method was first described by

Bödeker [25]: because the dynamics of the infrared modes
is fully overdamped, the gauge field evolution can be
described with a set of Langevin equations to leading
logarithmic accuracy [ln−1ð1=gWÞ] [23,25]

∂tAi ¼ −σ−1el
∂H
∂Ai

þ ξai ; ð5Þ

where σel ≈ 0.9239T is the non-Abelian “color” conduc-
tivity for the standard model, and we have identified
H=T ¼ S in Eq. (4). The Gaussian noise vector ξ obeys

hξai ðx; tÞξbj ðx0; t0Þi ¼ 2σelTδijδabδðx − x0Þδðt − t0Þ: ð6Þ

The Higgs field is parametrically much less damped than
the gauge field, and it can be evolved with Langevin
dynamics with a faster rate of evolution [26]. On the lattice,
the Langevin dynamics can be substituted with any fully
diffusive dynamics, for instance, the heat bath update with
random order. The heat bath update step can be rigorously
related to the Langevin time and, hence, the real evolution
time [26]. The continuum limit exists, and the finite lattice
spacing effects have been observed to be modest.
This method has been successfully used to measure the

sphaleron rate in pure gauge theory [26] and in the standard
model [14,27], but not yet using the physical Higgs mass. It
has also been used to study the bubble nucleation rate in
first-order electroweak phase transition [28] at unphysically
small Higgs mass.
The sphaleron rate is measured using Eqs. (1)–(3).

However, because topology is not well defined on a coarse
lattice, we use the “calibrated cooling”method of Ref. [29],
which gives a robust observable for the Chern-Simons
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FIG. 1. The parameters of the effective theory (4) as functions
of the temperature.
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number. In the symmetric phase, calibrated cooling can be
directly applied to the configurations generated by the heat
bath evolution. Deep in the low-temperature broken phase
the situation is more complicated. Although the Langevin
dynamics is still correct, the potential barriers between the
topological sectors become very large, because the Higgs
field has to vanish in the core of the sphaleron. Hence, the
rate becomes very small, and it is not practical to measure it
in normal simulations. This difficulty can be overcomewith
a special multicanonical Monte Carlo computation, where
the multicanonical method itself is used to calculate the
height of the sphaleron barrier (∼ sphaleron energy), and
special real-time runs are performed to calculate the
dynamical prefactors of the tunneling process. The physical
rate is then obtained by reweighting the measurements. For
details of this intricate technique, we refer to Refs. [14,29].
As we will observe, in the temperature range where both
methods work, these overlap smoothly.
Simulation results.—We perform the simulations using

lattice spacing a ¼ 4=ð9g23Þ [i.e., βG ¼ 4=ðg23aÞ ¼ 9 in
conventional lattice units] and volume V ¼ 323a3. In
Ref. [14] we observed that the rate measured with this
lattice spacing in the symmetric phase is in practice
indistinguishable from the continuum rate, and deep in
the broken phase it is within a factor of 2 of our estimate for
the continuum value. This accuracy is sufficient due to the
exponential suppression of the rate. Indeed, other system-
atic effects that would not be removed by the continuum
limit dominate our final error estimates, as described below.
In fact, our multicanonical algorithm becomes severely
inefficient deep in the broken phase at significantly smaller
lattice spacings, which makes a more controlled continuum
limit very costly. The simulation volume is large enough for
the finite-volume effects to be negligible [14].
In Fig. 2 we show the sphaleron rate as a function of

temperature. The straightforward Langevin results cover
the high-temperature phase, where the rate is not too
strongly suppressed by the sphaleron barrier. In fact, we
were able to extend the range of the method through the
crossover and into the broken phase, down to relative
suppression of 10−3.
Using the multicanonical simulation methods, we are

able to compute the rate 4 orders of magnitude further down
into the broken low-temperature phase. The results nicely
interpolate with the canonical simulations in the range
where both exist. In the interval 140≲ T ≲ 155 GeV the
broken phase rate is very close to a pure exponential and
can be parametrized as

log
ΓBroken

T4
¼ ð0.83� 0.01Þ T

GeV
− ð147.7� 1.9Þ: ð7Þ

The error in the second constant is completely dominated
by systematics. We conservatively estimate that the uncer-
tainties of the leading logarithmic approximation and
remaining lattice spacing effects [14] may affect the rate

by a factor of 2. The omitted hypercharge U(1) in the
effective action (with physical θW) can change the spha-
leron energy by ≈1% [16] and shift the pseudocritical
temperature by≈1 GeV [17]. These errors have been added
linearly together to obtain the error above.
In the symmetric phase the rate (divided by T4) is

approximately constant and can be presented as

ΓSymm=T4 ¼ ð8.0� 1.3Þ × 10−7 ≈ ð18� 3Þα5W; ð8Þ

where, in the last form, factors of ln αW have been absorbed
in the numerical constant. In pure SU(2) gauge theory the
rate is Γ ≈ ð25� 2Þα5WT4 [24,30]. A difference of this
magnitude was also observed in Ref. [27].
In Fig. 2 we also show the perturbative result calculated

by Burnier et al. [13]. We note that the full rate in Ref. [13]
is obtained by including a large nonperturbative correction
to the perturbative rate, logðΓ=T4Þ ¼ logðΓpert=T4Þ−
ð3.6� 0.6Þ, where the correction is obtained by matching
with earlier simulations in the broken phase [29]. However,
these simulations were done with a Higgs mass ≈50 GeV,
which is far from the physical one studied here. With the
correction included, their result is a factor of ≈150 below
our rate, albeit with large uncertainty. In Fig. 2 we have
removed this ad hoc correction altogether, and the resulting
purely perturbative rate agrees with our results well
within the given uncertainties of both the lattice and the
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FIG. 2 (color online). The measured sphaleron rate and the fit to
the broken phase rate, Eq. (7), shown with a shaded error band.
The perturbative result is from Burnier et al. [13] with the
nonperturbative correction used there removed; see main text.
Pure gauge refers to the rate in hot SU(2) gauge theory [21]. The
freeze-out temperature T� is solved from the crossing of Γ and
the appropriately scaled Hubble rate, shown with the almost
horizontal line.
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perturbative computation (δ logΓpert=T4 ¼ �2). Indeed, by
applying a smaller but opposite correction logðΓ=T4Þ≈
logðΓpert=T4Þ þ 1.6, the central value agrees perfectly with
our measurements. Because the perturbative result is
expected to work well deep in the broken phase, the match
gives us confidence to extend the range of validity of our fit
(7) down to T ≈ 130 GeV, in order to cover the physically
interesting range.
The expectation value of the square of the Higgs field

v2=T2 ¼ 2hϕ†ϕi=T [here ϕ is the three-dimensional field
introduced in Eq. (4)] measures the “turning on” of the
Higgs mechanism, see Fig. 3. As mentioned above, there is
no proper phase transition and v2ðTÞ behaves smoothly as a
function of the temperature. The observable hϕ†ϕi is
ultraviolet divergent and is additively renormalized [2];
because of additive renormalization, v2ðTÞ can become
negative.
The crossover temperature can be defined rather accu-

rately: using either the location of the maximum of
jdv2=dTj or the obvious location where Γ changes from
low-T to high-T behavior, we can estimate the crossover
temperature to be Tc ¼ 159.5� 1.5 GeV. The error esti-
mate is a combination of our temperature resolution and the
systematics due to omitted U(1) as described above.
In Fig. 3, we also show the two-loop RG-improved

perturbative result [2] for v2ðTÞ in the broken phase.
Perturbation theory reproduces Tc perfectly, and deep in
the broken phase v2 is slightly larger than the lattice
measurement. In the continuum limit, we expect this
difference to decrease for this observable; in Ref. [14]
we extrapolated v2ðTÞ to the continuum at a few temper-
ature values and with Higgs mass 115 GeV. The continuum
limit in the broken phase was observed to be about 6%

greater than the result at βG ¼ 9. Thus, for v2ðTÞ pertur-
bation theory and lattice results match very well.
Finally, we can use the sphaleron rate to estimate when

the diffusive sphaleron rate and, hence, the baryon number
becomes frozen in the early Universe. The cooling rate of
the radiation-dominated Universe is given by the Hubble
rate HðTÞ: _T ¼ −HT. The freeze-out temperature T� can
now be solved from [13]

ΓðT�Þ=T3� ¼ αHðT�Þ; ð9Þ

where α is a function of the Higgs expectation value vðTÞ
but can be approximated by a constant α ¼ 0.1015 to better
than 0.5% accuracy in the physically relevant range. Taking
H2ðTÞ ¼ π2g�T4=ð90M2

PlanckÞ, with g� ¼ 106.75 we find
T� ¼ ð131.7� 2.3Þ GeV, as shown in Fig. 2 (we neglect g�
changing slightly as the top quark becomes massive). This
temperature enters baryogenesis scenarios where the
baryon number is sourced at the electroweak scale, e.g.,
low-scale leptogenesis scenarios (see Refs. [13,31] and
references therein). For a more detailed baryon production
calculation, the rates of Eqs. (7) and (8) can be entered
directly into Boltzmann equations.
Conclusions.—The discovery of the Higgs particle of

mass 125–126 GeV enables us to fully determine the
properties of the symmetry breaking at high temperatures.
Using lattice simulations of a three-dimensional effective
theory, we have located the transition (crossover) point at
Tc ¼ ð159.5� 1.5Þ GeV, determined the baryon number
violation rate both above and well below the crossover
point, and calculated the baryon freeze-out temperature in
the early Universe, T� ¼ ð131.7� 2.3Þ GeV. In addition to
being intrinsic properties of the minimal standard model,
these results provide input for leptogenesis calculations, in
particular for models with electroweak scale leptons. It also
provides a benchmark for future computations of the
sphaleron rate in extensions of the standard model.
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