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Quantum cryptography promises levels of security that are impossible to replicate in a classical world.
Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted?
This central question dates back to the early 1990s when the challenge of achieving device-independent
quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-
independent security of a slight variant of Ekert’s original entanglement-based protocol against the most
general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be
modeled by the laws of quantum mechanics and are spatially isolated from each other and from any
adversary’s laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In
particular, the devices may have quantum memory and share arbitrary quantum correlations with the
eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous
nature of quantum correlations in the context of a multiparty protocol.
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The quest for unconditional security, or security based
solely on the validity of quantum mechanics, is the holy grail
of quantum cryptography. The rigorous proof that the BB84
[1] protocol for quantum key distribution (QKD) is uncondi-
tionally secure [2,3] (i.e., based solely on the validity of
quantum mechanics) appeared to mark the successful end of
this quest. Protocols for QKD allow two distant users, Alice
and Bob, with the help of quantum devices, DA and DB, to
establish a secret shared random key. Once a secret key has
been generated the parties can exchange messages in a
secure manner by using, e.g., a one-time pad. However, with
the implementation of practical QKD systems came the
realization that the quantum devices allowed for new kinds
of attacks [4,5], for instance, where classical information
gets leaked via quantum side channels [6]. Ruling out such
attacks demands both a high level of technical ingenuity [7]
as well as a measure of trust on the part of the user, thus
calling into question the label of unconditional security.
Is there a principled way to rule out all such attacks?

Mayers and Yao [8] were the first to put forth a challenge
now known as device independence: Except for a necessary
assumption of spatial separation, the quantum devices used
would be treated as completely uncharacterized entities,
and security would be guaranteed based solely on simple
tests performed on the devices. That such a scheme for
restoring unconditional security would even be possible
relies on a unique feature of quantum entanglement, called
monogamy [9]. Indeed, a hint of this approach can already
be seen in Ekert’s entanglement-based proposal for key
distribution [10], which advocated tests based on the
violation of Bell inequalities.
The first step toward a strong security guarantee was

taken by Barrett et al. [11], who showed how to analyze a

single round of interactions with the quantum devices.
A sequence of follow-up papers extended these techniques
to protocols where successive rounds are restricted to be
completely independent [12–19] (i.e., the devices are
memoryless), or causally independent [20,21]. In a recent
breakthrough, two groups succeeded in designing secure
protocols without making such independence assumptions
[22,23]. However, the cost in obtaining such strong
guarantees is that the analysis does not tolerate noisy
devices, and the key rate, the number of bits of key
extracted per use of the devices, tends to 0.
In this Letter we resolve the challenge of device-

independent quantum key distribution (DIQKD) by show-
ing that a variant of Ekert’s original protocol has all the
desirable features of DIQKD: It can be used to generate a
shared random key at a 5% rate (30% of the raw key) while
tolerating 2% noise rate in the devices (see Fig. 1 for a plot
of the dependence of the key rate on the noise), and
we establish its security against a general quantum eaves-
dropper. The security proof requires no independence
assumptions—it only assumes that the devices can be
modeled by the laws of quantum mechanics, and are
spatially isolated from each other and from any adversary’s
laboratory. Our proof is thus the first to hold against themost
general, “coherent” type of attacks. The key ratewe obtain is
nevertheless within a factor of 2 of the best rate known to be
achievable even under much stronger assumptions, such as
the assumption of individual attacks by the eavesdropper.
Since our security analysis ultimately rests on the violation

of a Bell inequality, its successful experimental demon-
stration faces the same difficulties as every entanglement-
based protocol for QKD. The most prominent hurdle is the
closure of the so-called “detection loophole” [24], currently
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a major challenge for experiments [25], but that has seen
major advances in recent years [26,27]. The practical
relevance of our results depends on, and we hope will
help motivate, the resolution of this challenge. In our Letter
we adopt a simple uniform model for the noise in which the
measurement statistics obtained by honestly prepared
devices are allowed to differ from the ideal statistics by
a quantitative amount of at most η ≤ 2%, as measured by
the statistical distance.
As previously mentioned, a property of quantum entan-

glement called monogamy plays a central role in the new
DIQKD protocol and its analysis. In its simplest form the
monogamy of entanglement states that two quantum
systems that are maximally entangled cannot share any
entanglement with a third system [28–32]. Intuitively,
device-independent security can be derived frommonogamy
as follows: First, use theviolation of aBell inequality (such as
the Clauser-Horne-Shimony-Holt [CHSH] inequality [33])
to establish that the correlations in the output distribution
of the devices DA and DB are consistent with sharing a
number of Einstein-Podolsky-Rosen (EPR) pairs jψEPRi ¼
1=

ffiffiffi
2

p ðj00i þ j11iÞ. Next, conclude, based onmonogamy of
entanglement, that these correlations must be independent of
any information that the eavesdropper, Eve, can obtain,
thereby ensuring the security of the bits output byDA andDB.
Crucially, this independence must be established even
though DA and DB may have additional degrees of freedom
that might be entangled with Eve’s system.
The key insight of Barrett et al. [11,34] toward obtaining

security guarantees for DIQKD was to focus on a weaker
set of constraints than those imposed by quantum mechan-
ics, specifically the no-signaling property dictated by
special relativity. This line of attack provided a way of
effectively quantifying, albeit only in the limited setting of

a single round of interaction, the effects of monogamy at
the level of the classical correlations between the systems.
Extending this approach to realistic protocols with many
rounds proved challenging [12–15], and lack of progress in
this direction was recently explained in a beautiful result
which establishes that approaches based solely on no-
signaling cannot ultimately achieve security even for
privacy amplification [35], a simpler task than QKD.
In contrast to the previous no-signaling approach

[11,34], our analysis relies on a more complete picture
of quantum mechanics. The key ingredient of quantum
mechanics that we use is the existence of postmeasurement
states. The properties of postmeasurement states play a
crucial role in our analysis, in particular through the use of
the so-called pretty-good measurement [36,37], a close-to-
optimal distinguishing measurement defined directly from
the postmeasurement states that plays a prominent role
in quantum information theory. No analogue of this
postmeasurement state exists for the case of purely
nonsignaling theories.
The protocol and results.—Our DIQKD protocol is

summarized in Table I. In each round i ∈ f1;…; ng of
the protocol Alice selects a random trit xi (element of
f0; 1; 2g) as input to her device DA and Bob selects a
random bit yi as input to his device DB. Upon receiving
their successive inputs, honest devices measure a fresh EPR
pair in a particular choice of bases, returning outcomes ai,
bi. Whenever x ∈ f0; 1g, the measurement bases are
chosen to maximally violate the CHSH inequality,

Prðai⊕bi ¼ xi∧yiÞ ¼ cos2ðπ=8Þ: ð1Þ

On the additional input x ¼ 2, Alice’s device DA measures
in the same basis as Bob’s on input 1. This guarantees that
ai ¼ bi whenever xi ¼ 2 and yi ¼ 1.
In the device-independent scenario, the devices are

completely untrusted: For the analysis, the joint state of
A, B and the eavesdropper E is modeled as an arbitrary
quantum state ρABE to which devices DA and DB apply
arbitrary measurements at each stage of the protocol. The
only assumption is that the three systems are localized:
Device DA (respectively, DB) only has access to system A
(respectively, B), and the eavesdropper to system E. In
particular, the users’ view of the protocol consists solely of
the sequence of trits and bits they choose as inputs, and the
sequence of bits they obtain in response. As we show, the
phase of testing in step 3 of the protocol is sufficient to
ensure security without further assumption about the inner
workings of the devices.
Theorem.—Let ps be the probability that the n-round

protocol does not abort, when executed with devices
DA;DB, a choice of noise tolerance η ¼ 0.02 and a
sufficiently small γ > 0. Let E be an arbitrary quantum
system held by an eavesdropper, who in addition has access
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FIG. 1 (color online). Key rate obtained in our protocol (middle
curve), expressed as a fraction of the raw key (bits obtained from
the key rounds). On the x axis is the noise rate η as measured in
the protocol. The top and bottom curves are the best achievable
rates known for the case of quantum and no-signaling adversa-
ries, respectively, under the additional assumption of causal
independence [21].

PRL 113, 140501 (2014) P HY S I CA L R EV I EW LE T T ER S week ending
3 OCTOBER 2014

140501-2



to the classical information P exchanged by Alice and Bob
on the authenticated public channel. Let A be the random
variable describing the output of DA, conditioned on the
protocol not aborting. Then

Hε
minðAjPEÞ ≥ 0.05n −O( lnðn=psεÞ):

Here Hε
min, the smooth conditional min entropy, is a

measure of the correlations between the output of Alice’s
device and the eavesdropper’s classical and quantum side
information. Smooth conditional min entropy has been
shown to be the appropriate measure of secrecy for the
establishment of a universally composable secret key [38].
The theorem shows that even a fairly weak test (the CHSH
game) between DA and DB strongly limits correlations
between the eavesdropper’s quantum state and the output
ofDA. In the setting of our protocol, this establishes a very
robust form of monogamy: It holds even in the presence of
a substantial amount of leaked classical information P and
assuming potentially extremely weak (ps, ε can both be
exponentially small in n) correlations betweenDA andDB.
More precisely, we obtain the following trade-off

between the min entropy and the noise rate. Suppose
that the protocol is run with devices such that the observed
CHSH correlations in the test rounds satisfy S ¼
2

ffiffiffi
2

p ð1 − 2QÞ, where 2
ffiffiffi
2

p
is the maximal possible viola-

tion of the CHSH inequality by quantum mechanics. Here
Q is related to our “noise parameter” η byQ ¼ η=

ffiffiffi
2

p
. Then

Hε
minðAjPEÞ ≥ −

11

3
log

�
11

12
þ 2

ffiffiffi
2

p

3
Q

�
;

and after information reconciliation and privacy amplifi-
cation the key rate r (expressed as a fraction of the key
rounds C) satisfies r ≥ Hε

minðAjPEÞ − hðQÞ, where h is the
binary entropy function. Although somewhat worse than
results obtained under the assumption of individual [13,14]
or collective [15,21] attacks (see Fig. 1 for a comparison),
our trade-off is already highly nontrivial and it is likely that
further work will lead to improvements.
Security proof.—The goal of the security proof is to

establish that the extracted key is random and secret under
the sole assumption that the devices pass the testing
phase of the protocol. Let n denote the number of rounds
of the protocol, and let A ∈ f0; 1gn be the string of bits
produced by Alice’s device. The privacy amplification
step at the end of the protocol ensures that to extract a
secure key it is sufficient to bound Eve’s information
about A as Hε

minðAjEÞ ≤ αn for some 0 < α < 1. So we
assume for contradiction that even though the devices
pass the test described in the protocol (Table I) with non-
negligible probability, Eve gains significant information
about A. The goal is to use the success in the CHSH
games between devices DA and DB to derive a contra-
diction. The main challenge is that the correlations
between Eve and A are in fact very weak: Our only
starting point is that she may gain non-negligible, but still
potentially very small, information about a (possibly,
again, quite small) part of the key. In addition, the
tripartite interaction created by the protocol is complex
and involves many rounds. This all but rules out the use of
techniques, such as semidefinite programming [21] or an
explicit modeling using linear algebra [19], that have been
useful in simpler contexts.
We proceed in two steps. The first step relies on a

powerful technique called the quantum reconstruction
paradigm [39,40], which figured prominently in recent
work on certifiable quantum randomness [41], a task
originally proposed in [42] and studied further in [43].
Suppose that Hε

minðAjEÞ ≤ αn. Then the reconstruction
paradigm says that there exists a bit string Z (depending
on A) of length roughly αn, such that given Z, Eve can
choose a measurement of her quantum system E that results
in a guess for A. Moreover, this guess will be correct with
probability that scales polynomially with ε=n (see Lemma
3 in the Supplemental Material [44] for a precise state-
ment). Crucially, in contrast to the direct interpretation of
the (nonsmoothed) min entropy as a guessing probability
[46], here the success probability does not depend on the
initial uncertainty αn. The fact that Eve can now predict A,
albeit based on additional “advice bits” in the form of the
string Z, is essential for the remainder of our argument.
As a result we have obtained a stronger form of the

adversary who is able to correctly guess, with small

TABLE I. Our DIQKD protocol requires the users, Alice and
Bob, to make n uses of their devices. From the n pairs of output
bits collected they are able to extract a shared key of length κn,
where κ is a constant depending on the noise rate η that the users
wish to tolerate.

1. Inputs: n ¼ number of rounds, η ¼ noise tolerance.
2. For rounds i ¼ 1;…; n: Alice picks xi ∈ f0; 1; 2g, and Bob
picks yi ∈ f0; 1g, uniformly at random. They input xi; yi into
their respective devices, obtaining outputs ai; bi ∈ f0; 1g
respectively.

3. Testing: Alice chooses a random subset B⊆f1;…; ng of size
γn, where γ is a small constant, and shares it publicly with Bob
(rounds in B are called test rounds). Alice and Bob announce
their input/output pairs in B. They compute the fraction of
inputs in B that satisfy the CHSH condition ai⊕bi ¼ xi∧yi. If
this fraction is smaller than cos2 π=8 − η they abort the
protocol.

4. Extraction: Alice and Bob publicly reveal their choices of
inputs. Let C be the set of rounds i in which ðxi; yiÞ ¼ ð2; 1Þ
(rounds in C are called key rounds). The users compute the
fraction of rounds in B∩C for which ai ¼ bi. If it is less than
1 − η they abort the protocol. Otherwise, they perform
information reconciliation on the remaining rounds in C,
followed by privacy amplification using, e.g., two-universal
hashing.
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probability, the whole output string A. Using Bayes’ rule
one can then derive the following:

PrðEve guessesA1…AncorrectlyÞ ≥ ε ⇒ ∃i0;
PrðEve guessesAijguesses for
A1;…; Ai0−1were correctÞ ≥ 1 − δ ð2Þ

for some small δ > 0. This concludes the first step of our
proof: We used the quantum reconstruction paradigm to
amplify the small, diffuse information that Eve may have
had about the key bits into the existence of a measurement
on her quantum system that successfully predicts, with high
probability, the bit output by DA in a single round i0 of the
protocol.
In the second step of the proof we derive a contradiction

between the above strong form of the adversary and the
CHSH tests performed as part of the protocol. To this end
we introduce a simple argument, called the “guessing
game,” that is flexible and lends itself to many different
types of scenario. In its basic form the guessing game states
that, if two parties Alice and Bob are spatially separated
and restricted to interacting with their own quantum
devices, then Bob cannot obtain any information at all
about Alice’s input to her device. This is exactly a
reformulation of the no-signaling condition. More pre-
cisely, we show that the first two of the following three
conditions are incompatible with the third by showing that
if both (a) and (b) held simultaneously in any single round,
then the corresponding devices could be used to provide a
successful (hence necessarily signaling) strategy in the
guessing game: (a) the devices violate the CHSH inequal-
ity, whenever the round was selected as a test round; (b) the
adversary can predict the output of Alice’s device, when-
ever the round was selected as a key round; and (c) the no-
signaling condition is satisfied between all three parties
(Alice, Bob and the adversary).
Figure 2 gives a pictorial representation of a triple of

devices that would satisfy all three conditions in a single
round. We give a quantitative argument showing the precise
tradeoff between them in Lemma 5 in the Supplemental
Material [44]. Recall that as a consequence of the first step,
we had identified a round i0, at the start of which the two
devices can be initialized in a state ρi0 [obtained through the
conditioning on outcomes in previous steps that follows
from our application of Bayes’ rule (2)] such that all three
conditions (a), (b), and (c) from the guessing game are
satisfied. Indeed, as a result of the conditioning performed
there exists a purification of ρi0 and a measurement for Eve
on that purification that will produce the same outcome as
Alice’s device DA, whenever its input is a 2. Moreover,
when given inputs in f0; 1g the devices will produce
outputs satisfying (1). Applying the guessing game leads
to a contradiction with the no-signaling condition.

To conclude the proof we need to overcome a substantial
difficulty that arises from the conditioning performed as
part of the first step of the argument, in (2). Since Eve’s
measurement, as obtained from the quantum reconstruction
paradigm, may depend on all public information in the
protocol, including the users’ choice of inputs as well as the
information leaked through the advice bit string Z, by
conditioning on the outcome of that measurement we are
making a postselection on the shared quantum state of the
devices DA and DB at the beginning of round i0. The result
is that condition (c) required for the application of the
guessing game, while it automatically holds a priori
(since the devices are nonsignaling by assumption), may
no longer be satisfied once the conditioning has been
performed. The difficulty is similar to one encountered in
the analysis of the parallel repetition problem in two-player
games [47], where conditioning on success in a subset of
the repeated games may introduce correlations among the
players in the remaining games. Here, the situation is
further complicated by the presence of entanglement
between the three parties and the fact that they are engaged
in a relatively complex interaction.
To overcome this last difficulty we again formulate the

situation as a game played between the different parties.
The key idea is that, if it was the case that Alice and Bob’s
state depended on the choice of inputs made by Eve to
perform her guessing measurement, then they could per-
form a measurement on that postmeasurement state to
recover information about Eve’s choice of inputs, thereby
violating the basic no-signaling assumption. Formally, we
obtain the following relation (Claim 9 in the Supplemental
Material [44]):

�
2n −

X
i

IðAB∶XiYiÞρi
�
þ logð1=εÞ ≤ 2n; ð3Þ

where IðAB∶XiYiÞρi is the quantum mutual information
between the quantum state of the two devices at the start
of round i and inputs that were chosen for the devices
in that round. The proof of Eq. (3) uses ideas originating
in the coding strategy used in the proof of the

FIG. 2. The guessing game. Any devices satisfying both the
CHSH condition a⊕b ¼ x · y and the guessing condition a ¼ e
with high enough probability must allow signaling between DA
and DB þ E.
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Holevo-Schumacher-Westmoreland theorem [48,49].
Combined with an application of the quantum Pinsker’s
inequality, Eq. (3) implies that, in an average round i, the
state ρi is approximately independent from the inputs in
round i, as required.
Discussion.—The protocol presented in this paper is the

first major example of a purely classical tester for untrusted
quantum devices that is provably robust against noise. Can
our techniques be used more generally in the design of
robust classical testers for untrusted quantum devices? One
natural context to consider is certifiable quantum random-
ness [41], where the quantum reconstruction paradigm
figured prominently in proving security against quantum
adversaries. In an earlier version of our Letter we asked
whether it is possible to design a protocol for randomness
expansion that retains security against quantum adversaries
while simultaneously being robust against noise. This
question was recently answered affirmatively in [50].
More generally, with the maturing of quantum technol-

ogy, there is intense interest in the question of how to test
whether a quantum device behaves according to specifi-
cation. Besides quantum cryptography, this issue arises in
testing that a quantum computer is really quantum [51,52],
and more generally in controlling the time evolution of an
adversarial quantum system [23], and even testing the
limits of quantum mechanics [53]. Solutions to date have to
assume either that the tester can itself use some quantum
resources, or that the protocol is entirely noise free: The
only known proof [23] that an untrusted quantum system
must evolve according to specification relies on directly
characterizing the quantum state of any devices passing the
tests of the classical tester, at the cost of a protocol that is
not robust against noise. We are hopeful that our work will
help open the way for the use of monogamy-based argu-
ments toward the design of robust classical testers for
untrusted quantum devices.
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