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We consider ultracold bosonic atoms in a single trap in the Thomas-Fermi regime, forming many-body
states corresponding to stable macroscopically fragmented two-mode condensates. It is demonstrated that
upon free expansion of the gas, the spatial dependence of the density-density correlations at late times
provides a unique signature of fragmentation. This hallmark of fragmented condensate many-body states in
a single trap is due to the fact that the time of flight modifies the correlation signal such that two opposite
points in the expanding cloud become uncorrelated, in distinction to a nonfragmented Bose-Einstein
condensate, where they remain correlated.
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Introduction.—The textbook definition of Bose-Einstein
condensation consists in the existence of exactly oneOðNÞ
(i.e., macroscopic) eigenvalue of the single-particle density
matrix (SPDM) [1–3], where N ≫ 1 is the total number of
particles. When interactions become sufficiently strong,
the condensate is depleted by scattering processes [3,4].
A fundamental question then arises: Upon increasing the
interaction beyond a certain threshold, do fragmented
condensates with two or more OðNÞ eigenvalues of the
SPDM exist [5], or does the system cross over directly from
a single condensate to nonmacroscopic fragments?
The phenomenon of fragmentation is well known when

the externally applied potential provides deep double wells
[6], or for the periodic extension deep optical lattices [7],
where the fragmented phase bears the name Mott insulator.
However, there has been the prevalent belief that for
experiments performed with ultracold atoms of one given
species in single (e.g., harmonic) traps, a nonfragmented
Bose-Einstein condensate is obtained, despite these experi-
ments usually being conducted in the Thomas-Fermi (TF)
limit, for which the kinetic energy is small compared to
trapping and interaction energies. That is, macroscopic
condensate fragmentation is supposed in these experiments
not to occur before three-body recombination [8] rapidly
destroys the condensate.
On the other hand, recent work has demonstrated that

condensate fragmentation is a genuine many-body phe-
nomenon and is intrinsically not describable within a
simple mean-field theory (within an effective Gross-
Pitaevskii theory) [9–12]. In a single trap, fragmentation
occurs for repulsive interactions in the ground state [9] and
for experimentally accessible TF parameters [10,11],
against the expectation that for repulsive interactions, no
fragmentation is obtained [13]. In the TF limit, interaction
thus can lead to the population of several macroscopically
occupied orbitals. The (quasi-)continuity of distribution
amplitudes in Fock space has been shown to be responsible

for the stability of fragmentation, also against thermal
fluctuations [14]. This is in strong contrast with the
unstable fragmentation occurring, e.g., in spin-orbit
coupled gases [15] or spinor gases [16], for which
fragmented states are (superpositions of) exact Fock states
[17], i.e., have sharply peaked distributions in Fock space.
An outstanding open question concerns the detection of

fragmentation in a single trap, that is, to verify conclusively
that it has indeed taken place. Fragmentation in the
superfluid-Mott transition on optical lattices is detected
by the decrease of the visibility of the structure factor peaks
[7]. This first-order correlation function measure of coher-
ence, directly related to the SPDM in position space
ρ1ðr; r0Þ [18], is not operative in a single trap. This is
primarily because, in general, the macroscopically occu-
pied natural orbitals (for a definition see below) will
significantly overlap in a potentially complicated fashion,
in distinction to the multiple-well scenario, where they are
well separated [6,7]. Unequivocally assigning fragmenta-
tion to the measured signal will thus be severely hampered.
This difficulty becomes particularly relevant when the
degree of fragmentation is relatively small.
Detecting density-density correlations is by now a

standard tool to discriminate one many-body phase from
the other [19]; the correlations can be measured both in situ
[20] and ex situ, that is, after time of flight (TOF); see, e.g.,
Ref. [21]. Motivated by this fact, we propose a readily
implemented experimental procedure to determine whether
a given condensate has fragmented. It is demonstrated that
density-density correlations after TOF give a clear and
unequivocal signature for the fragmentation. As we will
show, counterintuitively, the essentially noninteracting
expansion, which necessarily diminishes the density, mag-
nifies the characteristic signature of fragmentation.
We first introduce some terminology. Expanding

the field operator as ψ̂ðrÞ ¼ P
iψ iðrÞâi and writing the

SPDM in its eigenbasis ρ1ðr; r0Þ ¼
P

iλiψ
�
i ðrÞψ iðr0Þ, the
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corresponding orbitals ψ iðrÞ are called natural. We then
have hâ†i âji ¼ 0, ∀i ≠ j, and the eigenvalue λi ¼ hâ†i âii is
the occupation number of the natural orbital ψ iðrÞ.
A many-body state with more than one λi ¼ OðNÞ is a
fragmented condensate. We perform the calculation below
for two macroscopically occupied orbitals, assuming that
the thermal portion of atoms is negligible. The SPDM is
then a (truncated) 2 × 2 matrix, and the degree of frag-
mentation is defined by F ¼ 1 − jλ0 − λ1j=N. When both
eigenvalues are OðNÞ, F is finite and becomes maximal
(unity) when they are both equal to N=2. Considering two
macroscopic fragments is partly motivated by the recent
study [11], finding a stepwise increase of the number of
fragments from the single condensate upon increasing the
interaction coupling.
For two orbitals (modes), the Fock space many-body

state reads

jΨi ¼
XN
l¼0

Cl
ðâ†0ÞN−lðâ†1ÞlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − lÞ!l!p j0i≡XN

l¼0

CljN − l; li: ð1Þ

We assume the rather generic condition on the many-body
amplitudes Cl, see Ref. [9], that they have a sharply peaked
continuum limit distribution for the moduli, e.g., the
Gaussian jCðlÞj¼ ðπa2Þ−1=4exp½−ðl−N=2−SÞ2=ð2a2Þ�.
Here, the width of the distribution a ∝

ffiffiffiffi
N

p
and

the shift S are given in terms of the parameters of a
two-mode Hamiltonian in the trap, e.g., of the form Ĥ ¼
ϵ0â

†
0â0 þ ϵ1â

†
1â1 þ ðA1=2Þâ†0â†0â0â0 þ ðA2=2Þâ†1â†1â1â1 þ

½ðA3=2Þâ†0â†0â1â1 þ H:c:� þ ðA4=2Þâ†1â1â†0â0, where ϵi are
single-particle energies and Ai are interaction couplings
depending on the orbitals and the two-body interaction. We
then have a maximum at l0 (¼ N=2þ S for the Gaussian
distribution), whose relative width becomes very small
when N ≫ 1. Note that there are no single-particle tunnel-
ing terms − 1

2
Ωâ†0â1 þ H:c: and number-weighed tunneling

terms ∝ n̂0â
†
0â1 þ H:c: or ∝ n̂1â

†
0â1 þ H:c: when the

two modes have even (0) and odd (1) parity, respectively
(see also below). We set the pair-exchange coupling A3 > 0
(which is naturally of the same order as the other Ai in a
single trap [9,10]). From energy minimization and the
discrete time-independent Schrödinger equation ECl ¼
1
2
A3ðdlClþ2 þ dl−2Cl−2Þ þ ½ϵ0ðN − lÞþϵ1lþ 1

2
A1ðN− lÞ×

ðN − l − 1Þ þ 1
2
A2lðl − 1Þ þ 1

2
A4ðN − lÞl�Cl, connecting l

“sites” in Fock space differing by 2, we obtain
sgnðClClþ2Þ ¼ −1 (Cl ∈ R [22]). This entails a frag-
mented condensate many-body state due to the consequent
condition sgnðClClþ1Þ ¼ �ð−1Þl [9,10].
Density-density correlations.—We focus from now on

quasi-one-dimensional (quasi-1D) condensates, for which
the largest degrees of fragmentation can be expected [10].
We also assume that the condensate is deep in the TF
regime of large particle numbers [23]. The density
expectation value in terms of the axial coordinate z, in

the natural basis, reads ρðzÞ¼hψ̂†ðzÞψ̂ðzÞi¼N0jψ0ðzÞj2þ
N1jψ1ðzÞj2, where Ni ¼ λi ¼ hâ†i âii. The density-density
correlation function (the two-particle density matrix
(TPDM) in position space [24]) then takes the form

ρ2ðz; z0Þ ¼ hψ̂†ðzÞψ̂†ðz0Þψ̂ðz0Þψ̂ðzÞi
¼ jψ0ðzÞj2jψ0ðz0Þj2hâ†0â†0â0â0i þ 0 → 1

þ ðjψ0ðzÞj2jψ1ðz0Þj2 þ 0↔1Þhâ†0â†1â1â0i
þ 2ℜ½ψ�

0ðzÞψ�
1ðz0Þψ0ðz0Þψ1ðzÞhâ†0â†1â1â0i

þ ψ�
0ðzÞψ�

0ðz0Þψ1ðz0Þψ1ðzÞhâ†0â†0â1â1i�: ð2Þ

It is for given orbitals ψ iðzÞ prescribed by the TPDM
elements hâ†i â†j âkâli, which are, in turn, determined by the
many-body amplitudes Cl. The last line contains the pair-
exchange term, which decides whether the many-body
ground state in a single trap is fragmented [9].
For simplicity, the initial orbitals are assumed to fulfill

that ψ0ðz; 0Þ is an even real function of z with ψ0ðzÞ ¼
ψ0ð−z; 0Þ ∈ R and that ψ1ðz; 0Þ is an odd real function of z
with ψ1ðz; 0Þ ¼ −ψ1ð−z; 0Þ ∈ R; i.e., they have definite
parity in the trap [26]. We define w as a (finite) common
width measure of the orbitals, which is, e.g., a variational
parameter determined by the competition of interaction and
trapping [10]. In what follows, w ¼ 1 is used as the unit of
length, as well as ℏ ¼ m ¼ 1, with m the boson mass.
Calculating the TPDM elements from the continuum

limit for Cl, we have to Oð1=NÞ [27]

hâ†0â†0â0â0i ¼ N2
0; hâ†1â†1â1â1i ¼ N2

1;

hâ†0â†1â1â0i ¼ N0N1; hâ†0â†0â1â1i ¼ −N0N1: ð3Þ

This result remains valid as long as the Cl distribution is
centered at l0 ∼OðNÞ with a width ≪ N.
Turning off the trap potential in the weakly confining

axial direction only [28] (see Fig. 1), after a short initial
period of rapid expansion, for t ≫ 1, the gas will expand
ballistically [29]. One can then apply the noninteracting
propagator to the initial orbitals

ψ jðz; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

2πiw2
t

s
exp

�
iz2

2w2
t

�
~ψ jðz; tÞ; wt ¼

ffiffi
t

p
; ð4Þ

FIG. 1 (color online). Schematic of an axially freely expanding
quasi-1D gas in a fragmented condensate many-body state. The
two macroscopically occupied orbitals are indicated by red and
blue shaded areas. Density correlations are measured at two
(opposite) points z and z0 in the cloud at some given instant t.
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where ~ψ jðz;tÞ¼exp½−iz2=2w2
t �
R
dz0ψ jðz0;0Þexp½iðz−z0Þ2=

2w2
t �. At late times, ~ψ jðz; tÞ has the meaning of a Fourier

transform with respect to the variable pair (z0, z=w2
t ) to first

order in z0=wt, with ψ jðz0; 0Þ remaining spatially confined.
Selecting, e.g., two opposite points z ¼ −z0, for t ≫ 1,

we obtain the correlation ratio

ρ2ðz;−z; tÞ
ρ2ðz; z; tÞ

¼ ðj ~ψ0ðz; tÞj2N0 − j ~ψ1ðz; tÞj2N1Þ2
ρ2ðz; tÞ þ 4N0N1j ~ψ0ðz; tÞj2j ~ψ1ðz; tÞj2

: ð5Þ

According to the above formula, the approximately vanish-
ing value of ρ2ðz;−z; tÞ=ρ2ðz; z; tÞ for large degree of
fragmentation F , visible in Fig. 2, is related to comparable
initial curvature radii of modes with given parity, i.e., to
comparable dominant Fourier components. Note that
ρ2ðz;−z; tÞ=ρ2ðz; z; tÞ ¼ 1∀ t when F ¼ 0, i.e., N0 ¼ N.
We stress that when the pair coherence hâ†0â†0â1â1i þ

H:c: [cf. last term in Eq. (3)] were set positive, the ratio in
Eq. (5) becomes unity. The corresponding large difference
in the ratio of off-diagonal to diagonal density-density
correlations thus allows for the confirmation of the negative
sign of the macroscopic pair coherence ∝ OðN2Þ.
We make our discussion explicit by assuming the

following initial orbitals set. The harmonic oscillator
ground state is used for the lower single-particle state
ψ0ðzÞ ¼ π−1=4 exp½−z2=2� [30]. For the excited (odd) state,
we construct a superposition of two Gaussians of opposite
sign and the same width, with symmetrically placed centers
a distance d apart. This leads to

ψ1ðzÞ ¼
1

π1=4
sinh ðzd=2Þ exp ½−z2=2�
exp ½d2=16�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh ðd2=8Þ

p . ð6Þ

Varying d, this choice serves to illustrate the influence of
the overlap of the moduli jψ0;1ðzÞj on the correlations. For
d → 0, we obtain simply the first excited harmonic oscil-
lator state ψ1ðzÞ → π−1=4

ffiffiffi
2

p
z exp½−z2=2�; for d ≫ 1, the

outer peaks are located where the central Gaussian ψ0ðzÞ
has essentially zero weight; see the top part of Fig. 2.
The hallmark of single-trap condensate fragmentation

then becomes apparent upon increasing the degree of
fragmentation. As seen from Fig. 2, ρ2ðz;−αz; tÞ=
ρ2ðz; z; tÞ significantly decreases in the long-time limit
for any oppositely located points in the cloud, i.e., z0 ¼ −αz
with α > 0. The robust nature of the proposed indicator is
shown by decreasing the orbital overlap significantly; for
d ¼ 4 in Eq. (6) [see Fig. 2(b)], the result remains similar.
Note that the density itself satisfies scaling invariance upon
expansion of the cloud. The density-density correlation
signal thus obtained is strikingly different from that for a
double well, where it exhibits Hanbury Brown–Twiss
oscillations for z0 ¼ −z and a central peak instead of the
central depression seen in Fig. 2 [31,32].
Description with Fock-conjugate phase states.—The

above results can be rephrased in terms of a phase-state
representation of fragmented condensates [31]. Phase states
furnish the most natural tool to transparently describe

coherence properties (see, e.g., Refs. [33–37]) and will
serve to elucidate that the robustness of the presently
discussed fragmented many-body states stems from their
being conjugate to fragmented states which are (super-
positions of) sharp peaks in Fock space.
We prove in what follows that the macroscopically

occupied modes of the fragmented state correspond to
sharp peaks in the distribution function corresponding to
the weights of phase states [38]. We define the phase-state
representation of jΨi as the integral expression

jΨi ¼
Z

2π

0

dϕ
2π

Cϕ;l0 jϕ; N; l0i; ð7Þ

where Cϕ;l0 ¼
P

lClN N;l0;le
−ilϕ with the normalization

factor N N;l0;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðN − lÞ!l!=N!�½NN=ðN − l0ÞN−lll0�

q
. The

basis vectors jϕ; N; li ¼ ½ðψ̂†
ϕ;N;lÞN=

ffiffiffiffiffiffi
N!

p �j0i are created by
the l-dependent superposition operators
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FIG. 2 (color online). Temporal evolution of the density-density
correlations ρ2ðz; z0; tÞ for (a) d → 0 and (b) d ¼ 4 in Eq. (6). The
degree of fragmentation increases from left to right with values
F ¼ 0, 0.25, 0.5, 0.75. The top row of the panels is at t ¼ 0 and
in the original z and z0 variables; the bottom row is for t ≫ 1 and
in terms of scaling coordinates ~z ¼ z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w4

t

p
and ~z0 corre-

spondingly. The unit of correlations is N2=½πð1þ w4
t Þ�. Note the

different color gradings at the top and bottom in (b); for F ¼ 0,
the amplitude remains invariant between t ¼ 0 and t ≫ 1.
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ψ̂†
ϕ;N;l ≡

ffiffiffiffiffiffiffiffiffiffiffi
N − l

p
â†0 þ

ffiffi
l

p
eiϕâ†1ffiffiffiffi

N
p : ð8Þ

The phase-state formulation enables us to rewrite any
expectation value of an operator Ô in a given many-body
state, to a very good approximation [31], as an integral over
diagonal matrix elements

hÔi≃
Z

2π

0

dϕ
2π

jCϕj2hϕ; N; l0jÔjϕ; N; l0i; ð9Þ

where the amplitudes Cϕ ¼ P
lCle−ilϕ are the discrete

Fourier transforms of the Fock space amplitudes Cl.
Calculating Cϕ from the Cl distribution of stably

fragmented two-mode many-body states, one can show
that the latter are accurately represented by two sharp peaks
of the modulus (in the limit N → ∞) [31,39]

jCπ=2j ¼ jC3π=2j ¼
1ffiffiffi
2

p : ð10Þ

This simple representation of the many-body fragmented
state in terms of two distribution peaks of phase difference π
essentially stems from the property sgnðClClþ2Þ ¼ −1. The
widths of the peaks in phase and Fock space satisfy
the conjugation relation ΔCϕ ∼ ðΔClÞ−1 (∝ 1=

ffiffiffiffi
N

p
for the

Gaussian jClj distribution), so that ΔCϕ → 0 for N → ∞.
Fragmented two-mode condensates with quasicontinuous
Cl distributions hence correspond to superpositions of
macroscopic states with a phase difference of π, and the
twomacroscopically occupiedmodes of the quantumgas are
globally exactly out of phase with each other. This property
is in sharp contrast with double-well fragmented conden-
sates, where all values of the phase ϕ are equally likely
(jCϕj ¼ const) [31]. Macroscopically fragmented conden-
sates are also distinct from so-called quasicondensates [40]
occurring above a temperature∝ Nω2=μ, whereω and μ are
the longitudinal trapping frequency and chemical potential,
respectively, which possess strongly fluctuating phases.
The phase-state formalism facilitates an interpretation of

the strong suppression of ρ2ðz; z0; tÞ along z ¼ −z0 in Fig. 2
as follows. For simplicity of the following argument and
notational brevity, we put N0 ¼ N1 (F ¼ 1, l0 ¼ N=2)
and set ψ1ðzÞ to be the first excited harmonic oscillator
state (d → 0). Each of the Hilbert space vectors jπ=2;
N; N=2i and j3π=2; N;N=2i is a coherent state, according
to the definition in Eq. (8), for the orbitals ψ0ðzÞ þ iψ1ðzÞ
and ψ0ðzÞ − iψ1ðzÞ, respectively, omitting the normalizing
1=

ffiffiffi
2

p
. After TOF (t ≫ 1), the orbitals transform into

~ψ0ð~z; tÞ þ i ~ψ1ð~z; tÞ and ~ψ0ð~z; tÞ − i ~ψ1ð~z; tÞ, where the
scaling coordinate ~z ¼ z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w4

t

p
, and up to an irrelevant

common phase factor. Again, ~ψ0ð~z; tÞ is a Gaussian and
now i ~ψ1ð~z; tÞ is the first excited harmonic oscillator state.
Thus, ~ψ0ð~z; tÞ � i ~ψ1ð~z; tÞ have most weight at positive and
negative z for upper and lower signs, respectively. From
Eq. (9), hÔi¼ 1

2
hπ=2;N;N=2jÔjπ=2;N;N=2iþ 1

2
h3π=2;N;

N=2jÔj3π=2;N;N=2i, which decomposes into a sum of

correlation functions calculated with respect to the two
coherent states. Since, generally, ρ2ðz; z0Þ≃ ρðzÞρðz0Þ for
coherent states up to Oð1=NÞ terms, the resulting corre-
lations will correspondingly be concentrated in the region
z, z0 > 0 due to jπ=2; N; 0i and in the z, z0 < 0 region due
to j3π=2; N; 0i, but will almost vanish for z > 0, z0 < 0 and
z < 0, z0 > 0. A similar argument can be carried out for
N0 ≠ N1 and finite d, so that we obtain complete agree-
ment with Fig. 2. By the same argument, it can be shown
that an absorption image of the density alone will not allow
for the unique inference that the single-trap condensate has
fragmented.
Conclusion and outlook.—We have proposed an exper-

imental tool using standard density-density correlation
analysis to verify whether an ultracold, strongly interacting
gas of bosons in a single trap is a fragmented condensate.
The spatiotemporal behavior of density-density correla-
tions changes dramatically with the sign and magnitude of
pair correlations between the modes. Single-trap conden-
sate fragmentation is therefore a genuine many-body
phenomenon, in that it necessitates the observation of
second-order correlations. By contrast, for multiple-well
fragmentation, structure factor measurements, and hence
first-order correlations, suffice to detect fragmentation: The
externally imposed spatial separation of the fragments
already entails the direct observability of vanishing off-
diagonal long-range order.
The predicted decrease of the ratio of off-diagonal to

diagonal density-density correlations with time should be
measurable even for relatively small degrees of fragmenta-
tion F . We anticipate that values of F down to the level of
about 10%–20% should be measurable with current exper-
imental precision.
For future work, we envisage investigating the full

counting statistics of fragmented condensates. By their
very nature, there is no inverse mapping of correlation
functions to a unique many-body state. While correlation
functions can reliably measure global features of the many-
body state like the degree of fragmentation, they cannot
reveal local features in the Fock space distributions because
they integrate over such distributions. A single-shot analy-
sis might supply a one-to-one mapping of the many-body
state to measured quantities going beyond the predomi-
nantly Fock-state-based analyses existing so far [41].
Finally, many-body condensate fragmentation into a finite
number of macroscopic pieces potentially increases the
matter wave bunching towards the Hanbury Brown–Twiss
value for a thermal cloud of bosons [42].
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