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It is well known that an unambiguous discrimination of the four optically encoded Bell states is possible
with a probability of 50% at best, when using static, passive linear optics and arbitrarily many vacuum-
mode ancillae. By adding unentangled single-photon ancillae, we are able to surpass this limit and reach
a success probability of at least 75%. We discuss the error robustness of the proposed scheme and a
generalization to reach a success probability arbitrarily close to 100%.
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Introduction.—Bell measurements (BMs), projections of
two-qubit states on the Bell basis, form important compo-
nents of many protocols in quantum computation [1] and
communication [2]. Some of the most prominent examples
are quantum teleportation [3–5], entanglement swapping
[6], and dense coding [7]. In this Letter, we consider Bell
states in dual-rail encoding, which is the most convenient
and common encoding in optical quantum computation,
typically realized through two orthogonal polarization
modes. It is well known that an unambiguous BM in this
encoding, utilizing fixed arrays of passive, linear optical
elements, arbitrarily many vacuum ancilla modes, and
photon number resolving detectors (PNRDs), cannot reach
a success probability higher than 50% [8,9]. While non-
linear optical interactions of cubic [10] or quartic [11] order
do, in principle, allow for a complete BM, such schemes are
very inefficient in practice. Techniques from linear-optics
quantum computation [1] also enable one to achieve near-
unit BM efficiencies, but at the expense of complicated
entangled ancilla states and feed-forward operations. Much
more recently, two new schemes towards more practical
and efficient BMs were presented. On the one hand, Grice
[12] demonstrated that a 100%-efficient BM can be
approached without feed-forward, but with sufficiently
many entangled (Bell- and GHZ-type) ancilla states, which
are still fairly expensive and can be generated only
probabilistically. On the other hand, active optical elements
such as squeezers, without feed-forward and without any
ancillae, allow for BMs with above-1=2 efficiency [13]. In
fact, squeezing still transforms the mode operators linearly,
and it has also become a viable experimental resource, but
such squeezing-enhanced BMs have not yet been shown to
reach success probabilities greater than 64.3% [13].
We present in this Letter a scheme that reaches a success

probability of 75% without using any one of the exper-
imentally challenging methods mentioned above. The only
resources required are 50∶50 beam splitters, PNRDs, and
unentangled single photons as ancillae [14–19].
We further discuss a generalization to reach success

probabilities close to 100%. This extension is an adaption

of the scheme by Grice [12] from ancilla states with at
most one photon per mode to those with up to two photons,
and unfortunately, it also needs entanglement in the added
ancillae. Numerical investigations strongly suggest that
these states cannot be obtained from unentangled states
with passive linear optics, but techniques with an ancillary
atom exist [20]. Finally, we investigate the robustness of
our scheme to typical experimental errors such as imperfect
photon sources and lossy detectors.
3=4-Efficient Bell measurement.—The Bell states in

dual-rail encoding are given by

jψ�i ¼ 1ffiffiffi
2

p ðj1001i � j0110iÞ; ð1Þ

jϕ�i ¼ 1ffiffiffi
2

p ðj1010i � j0101iÞ: ð2Þ

We label the four optical modes from A to D. The simplest
way to do a BM that reaches the 1=2 limit for linear optics
is to use two beam splitters, whose action on the mode
creation operators is defined by

 
a†1
a†2

!
→

1ffiffiffi
2

p
�
1 i

i 1

� 
a†1
a†2

!
: ð3Þ

Throughout this Letter, a beam splitter always refers to this
phase-free 50∶50 beam splitter. Applying two of these to
combine modes A with C and B with D, respectively,
converts the Bell states to the following forms:

jψþi → iffiffiffi
2

p ðj1100i þ j0011iÞ; ð4Þ

jψ−i → 1ffiffiffi
2

p ðj1001i − j0110iÞ; ð5Þ

jϕ�i → i
2
ðj2000i þ j0020i � j0200i � j0002iÞ: ð6Þ

By the use of photon detectors for each of the modes, it is
now possible to perfectly discriminate jψþi and jψ−i from
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each other and from jϕ�i, whereas jϕ�i are indistinguish-
able from each other. Thus, an overall success probability
of 50% can be attained (given an even distribution for the
four Bell states).
Our method to obtain higher success probabilities

involves the usual linear-optics elements and ancillary
photons. To analyze their use, it is convenient to split
the modes into two pairs fA;Bg and fC;Dg. From now on,
these mode pairs are treated separately but in exactly the
sameway. Hence, the state jψ−i can always unambiguously
be discriminated from the other Bell states, since it always
sends one photon in each mode pair while the other Bell
states send 0 or 2. To discriminate the other three Bell
states, only the mode pair, in which two photons are sent,
can be useful. Hence, the remaining problem is to dis-
criminate the three states

jαi ≔ j11i; jβ�i ≔ 1ffiffiffi
2

p ðj20i � j02iÞ: ð7Þ

To achieve this, we use ancillary photons in the state

jϒ1i ¼
1ffiffiffi
2

p ðj20i þ j02iÞ ð¼ jβþiÞ: ð8Þ

At first glance, this is a highly entangled state, whose
creation might be hard, but this state can easily be obtained
by sending two identical single photons through a beam

splitter (Hong-Ou-Mandel effect [21]). This is the great
advantage of our scheme compared to other methods to
surpass the 1=2 limit. We only need single photons as
ancillae, no nonlinear effects [22], feed-forward techniques
[1], squeezing [13], or entangled ancillae [12].
In the following, the concrete use of the ancillary

photons is described. For convenience, the modes are
now labeled by increasing integers starting with 1 and 2
for the two modes of the relevant pair (see Fig. 1). Mixing
these modes with the ancillary modes 3 and 4 at two beam
splitters (1 with 3 and 2 with 4) leads to

jαijϒ1i →
1

4
ffiffiffi
2

p ð−
ffiffiffi
3

p
j3100i þ ij2110i − j1120i þ i

ffiffiffi
3

p
j0130i − i

ffiffiffi
3

p
j3001i − j2011i − ij1021i −

ffiffiffi
3

p
j0031i

−
ffiffiffi
3

p
j1300i þ ij1201i − j1102i þ i

ffiffiffi
3

p
j1003i − i

ffiffiffi
3

p
j0310i − j0211i − ij0112i −

ffiffiffi
3

p
j0013iÞ; ð9Þ

jβ�ijϒ1i →
1

8
½−

ffiffiffi
6

p
ðj4000i þ j0040i � j0400i � j0004iÞ − 2ðj2020i � j0202iÞ�

þ ð1� 1Þ 1
8
ð−j2200i þ j2002i þ j0220i − j0022i − 2j1111iÞ

þ ð1∓1Þ i
ffiffiffi
2

p

8
ðj2101i − j1210i þ j1012i − j0121iÞ: ð10Þ

Obviously, jαi can be discriminated from jβ�i unambig-
uously, since every term that originates from jαijϒ1i is
unique to jαi. It is useful for later to characterize these
terms: the total number of photons in modes with an odd
label nodd is itself odd. States originating from jβ�ijϒ1i on
the other hand have even nodd values. This is also true in the
simple BM without ancillae. The improvement lies in the
fact that there are some unique terms for jβþi and others for
jβ−i. The characterization of these terms is a little more
involved. The terms originating from jβ�i are of two types:
either the photons are equally distributed on even and odd
modes or they are all in modes with the same parity. In the

latter case, no information about the original state can be
obtained. But if there are two photons in odd and even
modes each, jβ�i can be discriminated by nf1;2g (the total
number of photons in modes 1 and 2), which is then even
for jβþijϒ1i and odd for jβ−ijϒ1i.
Adding up the squares of the amplitudes of the unique

terms shows that for each jβþi and jβ−i the probability of
measuring a unique constellation of photons in the four
modes is 50%.
If the described optical setup was applied to only one of

the original mode pairs (e.g., fA;Bg), the success proba-
bilities for jϕ�i were only 25% each, since the setup would

FIG. 1 (color online). Optical setup that identifies an input Bell
state jζi ∈ fjψ�i; jϕ�ig with a success probability of 75%. The
ancillary state jϒ1i can easily be obtained from j11i with a beam
splitter. It is worth emphasizing that this is a static setup. There is
no conditional dynamics between the two halves of the setup, so
the photon detectors can all be read out simultaneously.
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only be needed half of the time. It is, therefore, crucial
to use a second pair of ancillary photons on the other side
(pair fC;Dg). The complete optical setup is shown in Fig. 1.
The overall success probability of this BM can easily be

calculated to be

Psucc ¼
1

4
ð1þ 1þ 0.5þ 0.5Þ ¼ 3

4
: ð11Þ

Near-unit efficient Bell measurement.—In this section,
the presented approach is generalized by adding more
ancillary photons to reach higher success probabilities. This
section is similar [23] to Grice’s general scheme [12], and
we shall use a similar notation here. For better readability,
the detailed proofs of the two lemmata in this section are
included in the Supplemental Material [24].
As before, only one mode pair, e.g., fA; Bg, is consid-

ered. The optical setup is defined recursively. Given the
setup on the modes 1;…; 2N , the new setup on the modes
1;…; 2Nþ1 is constructed as follows: the old setup (without
the detectors) is applied to the modes 1;…; 2N , and an
identical copy is also applied to the modes 2N þ 1;…; 2Nþ1

in which the new ancillary state jϒNi is stored. Finally, the
modes are pairwise mixed: 1 with 2N þ 1, 2 with 2N þ 2,
and so on (see the Supplemental Material [25]).
Stated in terms of the 2Nþ1-dimensional vector of mode

creation operators, we have ~a† → SN~a† with the matrix SN
given by the recursive relation

SN ¼ 1ffiffiffi
2

p
�

SN−1 iSN−1
iSN−1 SN−1

�
ð12Þ

and S0 ¼ 12×2. The used input state is jξijϒ1i…jϒNi, a
product state of the unknown state jξi ∈ fjαi; jβ�ig and N
ancillary states given by

jϒji ≔
1ffiffiffi

2
p

22
j−2

2
64
Y2jþ1

k¼2jþ1
k odd

ða†kÞ2 þ
Y2jþ1

k¼2jþ1
k even

ða†kÞ2
3
75j0

¯
i

¼ 1ffiffiffi
2

p ½j2; 0; 2; 0;…; 2; 0i þ j0; 2; 0; 2;…; 0; 2i�; ð13Þ

where j0
¯
i ¼ j0ij0i…j0i denotes the multimode vacuum.

This recursive procedure is illustrated in Fig. 2.
Just as in the previous section, jαi can be distinguished

from jβ�i using nodd: Since each jϒji adds an even number
of photons to every mode (0 or 2) and since even and odd
modes are not mixed (see definition of SN), the parity of
nodd does not change from one setup to the next. Thus, nodd
is odd for jαi and even for jβ�i for every N.
The advantage of the additional ancillary photons is

that they allow us to reduce the degeneracy of jβþi and jβ−i
by half in each step. To see this, express the input states
for jβ�i as

jβ�ijϒ1i…jϒNi
¼ jΞ�

Ni þ jΞ�
N−1ijϒNi þ jΞ�

N−2ijϒN−1ijϒNi þ…

þ jΞ�
1 ijϒ2ijϒ3i…jϒNi þ jΓ�

Ni; ð14Þ

with

jΞ�
j i ≔

�
1ffiffiffi
2

p
�

jþ1 1

22
j−1

2
64
Y2j

k¼1
k odd

ða†kÞ2
Y2jþ1

k¼2jþ1
k even

ða†kÞ2

�
Y2j

k¼1
k even

ða†kÞ2
Y2jþ1

k¼2jþ1
k odd

ða†kÞ2
3
75j0

¯
i; ð15Þ

and

jΓ�
Ni ≔

�
1ffiffiffi
2

p
�

Nþ1 1

22
N−1

2
64
Y2Nþ1

k¼1
k odd

ða†kÞ2 �
Y2Nþ1

k¼1
k even

ða†kÞ2
3
75j0

¯
i:

ð16Þ

In Eq. (14), the terms are sorted by nodd − neven: Every jΞ�
j i

leads to an equal number of photons in odd and even
modes, but every jϒji adds either 2j photons to the odd
modes or to the even modes. So the term starting with
jΞ�

j i leads to nodd − neven ¼ �2N � 2N−1…� 2jþ1

(and 0 for j ¼ N). Furthermore, the term jΓ�
Ni leads

to nodd − neven ¼ �2Nþ1.
Hence, all terms in Eq. (14) can be distinguished by

nodd − neven. This can be used to discriminate between
jβþi and jβ−i since for every term except jΓ�

Ni the þcase
can be distinguished from the −case. To see this,
consider jΞ�

Ni.
Lemma 1: The parity of nf1;…;2Ng discriminates jΞ�

Ni:
nf1;…;2Ng is always even for jΞþ

Ni and always odd for jΞ−
Ni.

To discriminate þ from − for the other terms in Eq. (14)
starting with a jΞ�

j i, it is necessary that a discrimination

FIG. 2 (color online). Recursive definition of the optical setups
for N ≥ 2. Shown is only the relevant part of the total setup, with
ancillae and jξi ∈ fjαi; jβ�ig as the input.
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from a smaller setup (j < N) carries over to the current

setup. To this end, let Aðp;MÞ
m ¼ fm2p þ 1;…; ðmþ 1Þ2pg

be the subset of the 2M output ports, with 0 ≤ p ≤ M − 1

and 0 ≤ m ≤ 2M−p − 1. Furthermore, let Aðp;MÞ ¼ Aðp;MÞ
0 ∪

Aðp;MÞ
2 ∪…∪Aðp;MÞ

2M−p−2 and n
ðp;MÞ be the number of photons in

the detector set Aðp;MÞ.
Lemma 2: If the 2M-photon input state jΘMi always

leads to an odd (even) value of nðp;MÞ in the 2M-photon
setup, then the input state jΘMijϒMþ1i always leads to an
odd (even) value of nðp;Mþ1Þ in the 2Mþ1-photon setup.
With the aid of these lemmata, it is now clear that every

term except the last in Eq. (14) can be used to discriminate
jβ�i: jΞþ

j i can be distinguished from jΞ−
j i on the 2jþ1-port

system by the parity of nf1;…;2jg ¼ nðj;jþ1Þ. jΞþ
j ijϒjþ1i can

then be distinguished from jΞ−
j ijϒjþ1i by the parity of

nðj;jþ2Þ. Repeating this shows that jΞ�
j ijϒjþ1i…jϒNi can

be distinguished by the parity of nðj;Nþ1Þ. Thus, only the
terms jΓ�

Ni in Eq. (14) are ambiguous. Their norm is 2−N ,
and so the probability to unambiguously identify the states
jβ�i is 1 − 2−N for both, which leads to a total success rate
for the Bell measurement of

PðNÞ
succ ¼ 1þ 1þ 2ð1 − 2−NÞ

4
¼ 1 − 2−N−1; ð17Þ

approaching unity for N → ∞.
As mentioned before, the ancillary states jϒji are highly

entangled and for j ≥ 2 probably cannot be obtained from
single-photon states using passive linear optics [26]. This
seems to imply that 75% poses a boundary to BMs with
unentangled ancillae, just like 50% did for BMs with
vacuum ancillae. But it turns out that this is not true. With a
lengthy but straightforward calculation, one can see that a
probability of 25

32
> 3

4
can be reached. To do this, use the

setup for N ¼ 2 but replace jϒ2i by the state jϒ1ijϒ1i,
which is obtained by sending j1111i through two beam
splitters. Although the gain in success probability surely is
not worth the experimental cost, this shows that no
conceptual limit has been found yet (Supplemental
Material [27]).
Imperfections.—In this section, we investigate the influ-

ence of errors on the proposed scheme. Although there is a
multitude of possible errors that can occur in quantum
optics, we restrict ourselves to two of the main issues:
imperfect photon sources and lossy photon detectors.
Furthermore, we analyze only the 3=4-efficient BM and
not the generalized version.
Ideally, the photon sources produce the pure state j1i.

Two of these are sent through a beam splitter to obtain
the needed ancilla state jϒ1i. In a more realistic scenario,
the source will produce a mixed state of the form
ηsj1ih1j þ ð1 − ηsÞj0ih0j, where ηs denotes the probability
of the source producing a j1i. Combining two of these at a
beam splitter leads to

η2s jϒ1ihϒ1j þ ð1 − ηsÞ2j00ih00j þ ηsð1 − ηsÞ
× ðj10ih10j þ j01ih01jÞ: ð18Þ

Since the scheme is not loss resistant, only the first term
of this mixture is of use. Thus, the success probability
needs to be multiplied with a factor of η2s whenever the
ancilla state jϒ1i is needed.
A lossy photon detector ismodeled by a beamsplitterwith

transmittance ηd and one empty entry in front of a perfect
PNRD. Since only terms without photon loss are of use, the
probability of a successful event is multiplied with a factor
ηd for every photon involved (Supplemental Material [28]).
The successful events for the four Bell states can be

characterized in the following way:

½jψþi�—4 photons in one half of the setup and nodd is odd in
this one: PsuccðjψþiÞ ¼ η2sη

4
d,

½jψ−i�—3 photons in each half: Psuccðjψ−iÞ ¼ η4sη
6
d,

½jϕþi�—4 photons in one half, nodd is even, nodd−neven¼ 0

and nf1;2g is even: PsuccðjϕþiÞ ¼ 1
2
η2sη

4
d,

½jϕ−i�—4 photons in one half, nodd is even, nodd−neven ¼ 0

and nf1;2g is odd: Psuccðjϕ−iÞ ¼ 1
2
η2sη

4
d.

This leads to an overall success probability of

Psuccðηs; ηdÞ ¼
1

2
η2sη

4
d þ

1

4
η4sη

6
d: ð19Þ

It is clear that success rates higher than 1=2 can only be
obtained with sufficiently good photon sources and detec-
tors. But instead of looking at the bound of an ideal BM
without ancillae, i.e., with perfect PNRDs, it makes more
sense to compare this result with the success rates of a
simple BM as given in the first section, which suffers the
same errors. For this simple BM, no ancillary photons are
needed, but the two photons still need to be detected. In
order to be better than the simple BM, the experimental
parameters of our setup, thus, need to meet the require-

ment ηsηd ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
− 1

p
≈ 0.86.

So far, only the ancillary state jϒ1i has been considered
useful for the BM. A straightforward analysis, however,
shows that also the two-mode vacuum [second term in
Eq. (18)] can be used as an ancilla. Although the vacuum
does not help in identifying jβ�i, the information about jαi
remains intact, unlike the cases with exactly one photon in
the ancilla [third term in Eq. (18)]. Therefore, for heralded
photon sources [29,30], one could turn the latter cases into
vacuum as well through a feed-forward process, thus,
beating the simple BM independent of the actual exper-
imental parameters.
Conclusion.—We have shown that with the aid of single-

photon ancillae the 1=2 limit for BMs with static, passive
linear optics can easily be surpassed and a success
probability of more than 3=4 is possible. This increased
success rate has practical relevance, for example, in the
creation of cluster states or in quantum repeaters. From a
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conceptual point of view, it is more important that 25=32
poses a new maximal value for linear-optics BMs without
conditional dynamics, entangled ancillae, or active com-
ponents (squeezing).
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