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We introduce a rigorous framework for the quantification of coherence and identify intuitive and easily
computable measures of coherence. We achieve this by adopting the viewpoint of coherence as a physical
resource. By determining defining conditions for measures of coherence we identify classes of functionals
that satisfy these conditions and other, at first glance natural quantities, that do not qualify as coherence
measures. We conclude with an outline of the questions that remain to be answered to complete the theory

of coherence as a resource.
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Introduction.—Coherence, being at the heart of interfer-
ence phenomena, plays a central role in physics as it
enables applications that are impossible within classical
mechanics or ray optics. The rise of quantum mechanics as
a unified picture of waves and particles further strengthened
the prominent role of coherence in physics. Indeed, in
conjunction with energy quantization and the tensor prod-
uct structure of state space, coherence underlies phenomena
such as multiparticle interference and entanglement that
play a central role in applications of quantum physics and
quantum information science.

Quantum optical methods provide an important set of
tools for the manipulation of coherence, and indeed, at its
basis lies the formulation of the quantum theory of coherence
[1,2]. Here, coherence is studied in terms of phase space
distributions and multipoint correlation functions to provide
a framework that relates closely to classical electromagnetic
phenomena. While this is helpful in drawing intuition from
classical wave mechanics and identifies those aspects for
which quantum coherence deviates from classical coherence
phenomena, it does not provide a rigorous and unambiguous
framework. The development of such a quantitative frame-
work for coherence gains further urgency in the light of recent
discussions concerning the role of coherence in biological
systems [3] which can benefit from a more rigorous approach
to the quantification of coherence properties.

The development of quantum information science over
the last two decades has led to a reassessment of quantum
physical phenomena such as entanglement, elevating them
from mere tools to “subtly humiliate the opponents of
quantum mechanics” [4] to resources that may be exploited
to achieve tasks that are not possible within the realm of
classical physics. This viewpoint, then, motivates the devel-
opment of a quantitative theory that captures this resource
character in a mathematically rigorous fashion. The formu-
lation of such resource theories was initially pursued with the
quantitative theory of entanglement [5,6] which led to the
view that constraints [e.g., the restriction to local operations
and classical communication (LOCC)] that prevent certain
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physical operations to be realized define resources (e.g.,
entangled states) that help to overcome the imposed con-
straints [7,8]. This viewpoint has proven fruitful not only
for the development of applications, but also in providing
the impetus for theory to establish a unified and rigorously
defined framework for a quantitative theory of physical
resources by addressing the three principal issues: (i) the
characterization, (ii) the quantification, and (iii) the manipu-
lation of quantum states under the imposed constraints
[9,10]. This framework is being explored for entanglement
[5,6], thermodynamics [11,12], and reference frames [13]
and has led to the recognition of deep interrelations between
the theories of entanglement and the second law [7,8].

In contrast, a wide variety of measures of coherence
is in use (often functions of a density matrix’ off-diagonal
entries) whose use tends to be justified principally on the
grounds of physical intuition. Here, we put such measures
on a sound footing by establishing a quantitative theory of
coherence as a resource following the approach that has
been established for entanglement in Refs. [6-8] and for
reference frames in Ref. [13]. We present the basic
assumptions of our approach and use these to identify
various quantitative and easy-to-compute valid measures of
coherence while rejecting others.

Results.—At the heart of our discussion lies the charac-
terization of incoherent states together with the notion of
incoherent operations, i.e., quantum operations that map the
set of incoherent states onto itself. We distinguish between
quantum operations with and without subselection. These
technical definitions lead to an operationally well-defined
maximally coherent state which may serve as a unit for
coherence. We collect a set of conditions any proper measure
of coherence should satisfy. Prime among them is the
requirement of monotonicity under incoherent operations.
We, then, discuss several examples—some of which take the
form of easy to evaluate analytical expressions. For instance,
we find that the relative entropy of coherence

Crel,enL (@) = S(@diag) - S(@) ’ (1)
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where § is the von Neumann entropy and Qgi,, denotes the
state obtained from ¢ by deleting all off-diagonal elements,
and the intuitive /; norm of coherence

= Z|Qi,j , (2)

i
i#]

G, (0)

are both proper measures of coherence. In contrast, we
find that the sum of the squared absolute values of all
off-diagonal elements violates monotonicity.

Incoherent states.—The first step to defining a coherence
measure is to agree which states are incoherent. A natural
definition is to fix a particular basis, {|i)},_, 4 of the
d-dimensional Hilbert space H in which we consider our
quantum states [14]. We call all density matrices that are
diagonal in this basis incoherent and, henceforth, label this
set of quantum states by 7 C H [15]. Hence, all density

operators 5 € T are of the form
A d
5= ali)il. (3)
i—1

Incoherent operations.—The definition of coherence
monotones (and, thus, coherence quantifiers) requires the
definition of operations that are incoherent—just as in
entanglement theory the definition of entanglement monot-
ones requires a definition of nonentangling operations.
There, this definition is determined by practical consid-
erations, namely locality constraints, which leads to the
definition of LOCC operations. Here, we characterize the
set of incoherent physical operations as follows. Quantum
operations are specified by a set of Kraus operators {k nt
satisfying an{j,f( » = 1. We require the incoherent oper-
ators to fulfil K,ZK] c Z for all n [16]. This definition
guarantees that in an overall quantum operation
o>, K,0K}, even if one does not have access to
individual outcomes n, no observer (e.g., one who does
have access to these outcomes) would conclude that
coherence has been generated from an incoherent state.
Hence, we do not allow, not even probabilistically, that in
any of the arms of the quantum operation coherence is
generated from incoherent input states.

We distinguish two classes of quantum operations.
(A) The incoherent completely positive and trace preserv-
ing quantum operations ®;cprp, which act as ®ycprp(0) =
S, K,0K', where the Kraus operators K, are all of the
same dimension d,, X d;, and satisfy K,ZK} c Z. Note
that this formulation of quantum operations implies the
loss of information about the measurement outcome which
may, however, be available in principle.

This leads us to the second class of operations.
(B) Quantum operations for which measurement outcomes
are retained (depending on the context, called measuring,
selective, or stochastic operations) and, therefore, permit

subselection according to these measurement outcomes.
These are also defined by Kraus operators K, with
S ,KiK, =1, which now, however, may each have a
different output dimension (K, is a d,, x d;, matrix) and are
again required to fulfil K,ZK, c T for each n. Retaining
the knowledge of outcomes of the measurement, the state
corresponding to outcome n is given by 9, = K,,0K}./p,
and occurs with probability p, = tr[K,0K})].

Incoherent Kraus operators that are of particular impor-
tance for decoherence mechanisms of single qubits are,
e.g., the ones that define the depolarizing, the phase-
damping, and the amplitude-damping channels [17,18].
Moreover, permutations of modes of dual-rail qubits in
linear optics experiments are examples of incoherent
operations. With this, we set the framework for a resource
theory for quantum coherence. All that follows is deduced
from these physically well motivated definitions.

Maximally coherent state—We start by identifying a
d-dimensional maximally coherent state as a state that
allows for the deterministic generation of all other
d-dimensional quantum states by means of incoherent
operations. Note that this definition (i) is independent of
a specific measure for the coherence and (ii) allows us to
identify a unit for coherence to which all measures may be
normalized. A maximally coherent state is given by

1 K
|q}d>’=ﬁ;|l>7 (4)

because by means of incoherent operations [of type (A) or
(B)] alone, any d x d state 9 may be prepared from |U,)
with certainty. We show this by explicitly constructing an
incoherent operation that achieves the transformation in
the Supplemental Material [19].

Two natural questions arise immediately. First, is this
maximally coherent state a resource which, when con-
sumed, allows for the generation of all other coherent
operations by means of incoherent operations? We dem-
onstrate in the Supplemental Material [19] that this is,
indeed, the case: Provided with |U,), every unitary oper-
ation on a qubit may be implemented by incoherent
operations. Second, one may ask whether incoherent
operations introduce an order on the set of quantum states,
i.e., whether, given two states ¢ and &, either ¢ can be
transformed into 6 or vice versa. We have to leave this
as an open question, but report small progress in the
Supplemental Material [19], for which we note the analogy
to the single copy conversion protocol for entangled pure
states presented in [24,25].

Coherence measures.—We now collect defining proper-
ties that any functional C mapping states to the non-
negative real numbers should satisfy in order for it to be a
proper coherence measure. First of all, we demand that it

vanishes on the set of incoherent states: (C1) C(6) = 0 for
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aldel ; 1.e., it should be zero for all incoherent states.
One may also think of requiring a stronger condition:
(C1") C(8) =0 iff €T, which implies nonzero C()
whenever @ contains coherence. Obviously, (C1’)
implies (C1).

Crucially, any proper coherence measure should not
increase under incoherent operations of type (A) or (B):
(C2a) Monotonicity under incoherent completely positive
and trace preserving maps, i.e., C(9) > C(Picprp(0)) for
all ®Pycprp. Recall that this ignores the possibility of
subselection based on measurement outcomes. Retaining
measurement outcomes leads to: (C2b) Monotonicity
under selective measurements on average, i.e., C(9) >
S, paC(o,) for all {K,} with > ,KiK,=1 and
K,IK} cT.

It should be noted that, besides the requirement of
monotony under operations of type (A) and (B), one may
argue that subselection based on measurement outcomes is
described by adding a classical flag to the relevant quantum
states 0,, which introduces a third monotonicity require-
ment. We further comment on this in the Supplemental
Material [19], where we show that the relative entropy
of coherence and the /; norm of coherence are also
monotonic under these operations, further strengthening
their pivotal role.

Ideally, one would like to identify measures that fulfil
both conditions (C2a) and (C2b). We would consider
monotonicity under (C2b) more important as it allows
for subselection, a process available in well controlled
quantum experiments. We will see, however, that (C2b) is
often harder to verify while (C2a) is automatically satisfied
for a wide class of coherence measures.

Moreover, from a physical point of view, one would like
to ensure that coherence can only decrease under mixing.
This leads to our final condition: (C3) Nonincreasing under
mixing of quantum states (convexity), i.e., >, p,C(0,) >
C(>,pn0,) for any set of states {¢,} and any p, >0
with Y. p, = L.

Now, coherence measures that satisfy conditions (C2b)
and (C3) imply condition (C2a)—again, highlighting the
importance of (C2b). This can be seen as follows:

C2b)

C(Picpre(0)) = C(an@n)EB) anc(@n)( < C(0).

In the following, we study natural candidates for coherence
measures. All are based on distance measures.

Distance measures.—For any distance measure between
quantum states D, we may define candidate coherence
measures by

Cp(@) = minD(g, 0). (5)

Sez
i.e., the minimal distance (in the sense of D) of ¢ to the set
of incoherent quantum states Z. By definition, (C1’) is

automatically fulfilled for all D with D(3,5) = 0 iff
0= 3, which holds, e.g., if D is a metric.

In analogy to the theory of entanglement [26], we may
immediately identify an entire class of distance measures D
for which Cp fulfils (C2a): Whenever D is contracting
under CPTP maps, i.e., such that D(9,6) > D(Pcprp(0),
®cprp(6)) for any completely positive trace preserving map
Dcprp, it induces a functional fulfilling (C2a) as then

Cp(2) = D(0.6.,) > D(Picprp(0). Picprp(5.))
2 rsnigp(q’lcwp(@)v 3) = Cp(Picprp(0)).  (6)
S

where we used that ®;cprp(Z) € Z and denoted by 8, the
incoherent state minimizing the distance to ¢.

Whenever D is jointly convex, the induced coherence
monotone Cyp fulfils condition (C3)

C’D <an@n> < D(an@nv angi’;)
< anp(@n’SZ) = anCD(@n)’ (7)

where, for all n, Sf, minimizes the distance to Q,.
If D(0.5) = |0 — 8| with ||-| any matrix norm, (C3)
is automatically implied by the triangle inequality and
absolute homogeneity.

Condition (C2b) seems to be much harder to decide.
A good starting point for showing (C2b) would be to check
whether D fulfils the conditions given in Ref. [6]. We
proceed by considering specific examples.

Relative entropy of coherence.—Consider the quantum
relative entropy, S(0(|6) = tr[¢log(o)] — tr[olog(6)], and
denote the induced measure by C, - It clearly fulfils
(C1) and also (C1’). Further, it is known that the relative
entropy is contracting under CPTP maps and jointly convex
[27,28]; i.e., Cpopene. satisfies (C2a) and (C3). It also fulfils
(C2b), which can be shown following the approach of [6]
for general selective measurements (see the Supplemental
Material [19]). In addition to fulfilling all our requirements
for a coherence measure, C. ., permits a closed form
solution, avoiding the minimization: Let & = 3_,8;|i)(i] €
7 and for given 0=3_; ;0; 1) (/| denote Qqiae =>_,0i.|1) (il-
Then, S(0[|8) = S (Qdiag) — S(0) + S (@diag”S)’ and hence,

Crel.ent. (@) = S(@diag) - S(@) (8)

Employing this formula, we can easily find the maximum
possible value of coherence in a state: For any state 9,
one has Ciejent (0) < S(Qding) < log(d) and this bound is
attained for the maximally coherent state defined above.
Note that this relative entropy measure was also considered
in similar contexts such as, e.g., to quantify superposition
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and frameness [29-34]. Notably, monotonicity of Ci e cn.
under (C2a) is a special case of a result of Ref. [29].

1, norms.—A very intuitive quantification of coherence
would certainly be related to the off-diagonal elements of
the considered quantum state. Therefore, quantifying the
coherence by a functional depending on the off-diagonal
elements is desirable. A widely used quantifier of coher-
ence is given by

Cl1 (@) = Z|Qz}j|- (9)
i
But is it a proper coherence measure in the sense of
(C1H—(C3)? If so, it would constitute another intuitive
coherence monotone with an easy closed form. It is the
measure induced by the /; matrix norm [35], D, (0. ) =
llo— 3|I1l =i jleij = 6i;|, and as such fulfils (C1") and
(C3). What is more, (C2b) can be shown directly (see the
Supplemental Material [19]) such that (C2a) is implied (see
the discussion above). Hence, the /; norm of coherence,
together with the relative entropy of coherence, are the most
general coherence monotones established in this Letter.
One may now ask whether measures induced by other /,,
matrix norms serve as proper coherence monotones as well.
For instance, consider the measure induced by the squared
Hilbert-Schmidt norm; that is

€1, (@) = min(lg - 312 = "leis (10)
S T

i

In the Supplemental Material [19], we show that C;, does
not satisfy (C2b), i.e., that there are incoherent operations
of type (B), under which C;, increases. This shows that
care must be taken when quantifying coherence: While C;,
might intuitively seem like a good candidate due to its
simple structure related to the off-diagonal elements of the
quantum state, it does not constitute a valid coherence
monotone.

We discuss other potential candidates such as the
measures induced by the fidelity and trace norm in the
Supplemental Material [19].

Outlook.—In the preceding, we have provided the
foundations for a theory of coherence as a resource as
well as first results specifically concerning the quantifica-
tion of coherence. Completion of this theory is a sizeable
task that requires a thorough consideration of the questions
of the manipulation, quantification, and exploitation of
coherence under this resource viewpoint.

In this Letter, we have determined the notion of a
maximally coherent state, but we have not yet provided
a full theory of the interconversion of coherent states by
means of incoherent operations. This has two principal
aspects. On the one hand, the setting of single copies of
coherent states is of considerable interest from the practical
point of view as this is most readily accessible in the
laboratory. We expect that a theory can be established that

proceeds along analogous developments in entanglement
theory. There, the concept of majorization provided the
relevant structure that determined the interconvertibility of
states [24,25,36] and enabled the exploration of concepts
such as catalysis [37]. Some progress in this direction has
been reported in Ref. [38] for a specific setup but with a
different class of allowed quantum operations. Whether
such a phenomenon also occurs for this resource theory of
coherence or whether a total order on quantum states can be
established needs to be explored.

On the other hand, the asymptotic limit of infinitely
many identically prepared copies of a coherent state and its
interconversion by incoherent operations is of interest as it
may provide a link to thermodynamical concepts such as
the second law [7,8,39], by enabling reversible intercon-
version of coherent resources and, by invoking natural
continuity requirements such as asymptotic continuity [40],
it may lead to the identification of a unique coherence
measure. The latter we expect to be realized by the relative
entropy of coherence in close analogy to the development
in entanglement theory [7,8]. Reference [34] takes steps in
this direction and provides a thermodynamic interpretation
of the relative entropy measure of coherence in the context
of thermodynamic equilibria for decoherence processes.

A second aspect of the manipulation of coherence con-
cerns its exploitation as a resource when only incoherent
operations and a supply of coherent states is available [38,41].
In a first step, we have demonstrated that any (coherent)
unitary operation can be realized in this fashion. The resource
optimal protocols and the generation of the most general
quantum operation from these resources has not yet been
established. This in turn motivates questions such as the
coherence cost of quantum operations and the dual question
of coherence power of operations, again closely mirroring
analogous developments in entanglement theory [41,42].

It is likely that each of the three lines of enquiry above
will lead to the definition of sensible and good coherence
measures, each of which will be related to the efficiency of
certain coherence transformations. This will then provide a
well rounded picture of the quantification of coherence as
a resource.

All of the considerations above implicitly assumed the
finite dimensional setting, but this is neither necessary nor
desirable as there are very relevant physical situations that
require infinite dimensional systems for their description.
Most notable the quantum states of light, that is quantum
optics, with its bosonic character requires infinite dimen-
sional systems, harmonic oscillators, for their description.
Hence, a quantum theory of coherence in infinite dimen-
sional systems is needed. Again, closely mirroring the
development of entanglement theory mathematical prob-
lems concerning continuity that are inevitably emerging
can be addressed by requiring energy constraints [43] or
by considering special, experimentally relevant, subclasses
such as Gaussian states [44].
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Conclusions.—In this Letter, we introduced the notion of
incoherent states (in a fixed basis) which then allowed us to
identify incoherent operations [45]. We explicitly distin-
guished between incoherent operations (A) with and (B)
without subselection and established the maximally coher-
ent state as the element from which all quantum states
(mixed or pure) can be generated only by means of these
operations [either type (A) or type (B)]. We gave a set of
properties which every proper measure of coherence should
satisfy and identified the relative entropy of coherence and
the /; norm of coherence as the most general and easy to
use quantifiers. The questions that we formulated in the
outlook of this work are of considerable interest to
complete this resource theory of coherence.

We acknowledge discussions with Susana Huelga that
helped to motivate the development of the present work,
and discussions with Nathan Killoran and Robert
Spekkens. This work was supported by the Alexander
von Humboldt Foundation, the EU Integrating Project
SIQS, the EU STREP PAPETS, and the BMBF
Verbundprojekt QuoReP.

Note added.—Recently, we became aware of the related
Ref. [46], in which questions of monotonicity under
incoherent operations are also discussed.
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