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We introduce a simple class of distribution networks that withstand damage by being repairable instead
of redundant. Instead of asking how hard it is to disconnect nodes through damage, we ask how easy it is to
reconnect nodes after damage. We prove that optimal networks on regular lattices have an expected cost of
reconnection proportional to the lattice length, and that such networks have exactly three levels of structural
hierarchy. We extend our results to networks subject to repeated attacks, in which the repairs themselves
must be repairable. We find that, in exchange for a modest increase in repair cost, such networks are able to
withstand any number of attacks.
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Infrastructure networks, such as distribution systems
(power and water) [1,2], communication grids (cellular
and World Wide Web), and transport networks (road and
rail) [3], underlie much of modern society but are vulner-
able to both natural phenomena (tsunamis, hurricanes, and
earthquakes) and man-made threats (accidents, terrorism,
and depletion). The loss is exacerbated by a tendency to
collapse even though the fraction of each network damaged
may be small [2,4,5]. Increasing their resilience is, there-
fore, a topic of practical concern [6].
To safeguard against the threat of disasters, many

researchers have focused on robustness, whereby damage
is absorbed due to internal redundancy. Robustness tends to
be the strategy adopted by biological networks, such as the
circulatory and nervous systems and leaf venation [7],
which also must function reliably under environmental
insults [8]. Robustness, however, is not the only strategy for
increasing resilience. Recently, the European Union sci-
ence agency appealed for “resilience concepts [that] take
into account the necessity to … implement a substitution
process in a crisis or disaster, aiming to deal with a lack of
… capacities necessary to assume the continuity of basic
functions and services, until recovery from negative effects
and return to the normal situation” [9]. This “substitution
process,” or workaround, involves finding a short-term fix
until the damaged part itself can be repaired [10]. When the
typical cost of a workaround (averaged over all possible
failure modes) is low, we say that the system is repairable.
Repairability in this sense is the subject of this Letter.
For concreteness, we define the two resilience strategies

as follows: A network is robust if, after an error in part of it,
it is able (or more likely) to function normally on account of
internal redundancy. A network is repairable if, after an
error in part of it, it is able (or more likely) to function
normally on account of intervention in other parts of it.

Before considering network resilience, we briefly outline
optimal infrastructure networks. The simplest models take
connectivity to be the sole determinant of function. Such
models are appropriate for certain networks under light
load, such as roads, electricity supply [11], and commu-
nication networks [12]. Here the network cost typically
grows with the total length of the edges; if the cost equals
the total length, optimal solutions are minimal spanning
trees [11]. As a network becomes more heavily used,
connectivity alone is no longer sufficient, and the capacity
of the edges must also be considered. For models derived
from resistor networks, efficiency translates to minimum
power dissipation. If one associates a cost R−γ with each
resistance R and specifies a total cost, then for planar
networks with γ < 1, loopless geometries are known to be
optimal in an unchanging environment [13,14]. More
generally, this approach provides an explanation for fractal
branching networks in biology, and ultimately for allo-
metric growth laws [15].
In the presence of unexpected events, rather than a static

environment, the traditional approach to guaranteeing
function is building in redundancy (localized, such as extra
paths from source to sink, or distributed, such as checksums
in digital data). For models of the Internet, where simple
connectivity suffices, the exponent of the distribution of
node degrees [16] is the key parameter, for both random
[17] and directed [18] attacks, and where failures may
cascade [4,5,19]. For planar resistor networks with γ < 1, if
there is local damage, or the loads or sources fluctuate, the
designs that emerge from numerical optimization have
redundancy with a hierarchical loop structure over many
length scales [7,20,21].
The above work has focused on network robustness,

whereas we want to understand network repairability. In
doing so, we wish to capture the constraints on real
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infrastructure networks, in particular, the cost of capacity
rather than just connectivity. Resistor networks account for
this in a natural way, but analytic results often depend on
large matrix computations [22–24]. Models of intermediate
complexity, such as packet congestion [25,26], have there-
fore been proposed. Here we consider a related, but time-
continuous, model, where the required capacity of each
edge is equal to the number of downstream nodes it has to
serve. An example is shown in Fig. 1(b), where houses are
supplied with water from a central tower.
In this Letter, we do three things, each of which

corresponds to a separate part. (i) We introduce a model
of repairable networks in which a break at edge i can be
mitigated by adding an edge j, and show that the cost of
repair is the flux at i times the length, less 1, of the loop
through i and j. (ii) We introduce the concept of an easily
repairable network (ERN), which minimizes the expected
cost of repair hci after a single attack. We prove that ERNs
have exactly three levels of structural hierarchy. (iii) When
attacks are sufficiently numerous to strike the same place
repeatedly, the repairs themselves must be easily repairable.
To address this, we describe steady-state ERNs, able to
withstand any number of attacks in exchange for a modest
increase in hci.

Model of repairable networks.—For some systems,
mistakes are reversible: the unintended change can be
reverted or the broken part can be replaced like for like [27]
(an on-screen typo, a dropped pen, a flat tire). More often
than not, however, the error is irreversible or the repair time
is unacceptably long (a printed typo, a missing ingredient, a
jet engine failure). In these cases, it is necessary to find a
workaround, that is, to restore the broken part by interven-
ing in other parts.
As a model of the latter, suppose we need to continu-

ously transport a commodity or information from a single
source node (hereafter, source) to a collection of N
downstream nodes (hereafter, nodes), each of which con-
sumes the substance at a unit rate. We imagine that the
source and N nodes form the vertices of an underlying
lattice L, which we take to be either a square with side
length l (L□, Fig. 1) or triangular with a hexagonal
boundary with side length l=2 (L△). Note that l counts
nodes not edges, and is odd. The total number of vertices is
l2 (L□) or 3

4
ðl2 − 1Þ þ 1 (L△), so that N□ ¼ l2 − 1 and

N▵ ¼ 3
4
ðl2 − 1Þ. The bonds of L are the possible conduits

for transport, but not all of these bonds will be used in
practice; the ones that are, we call edges. Each edge i
carries a signed flux Ji, such that the flux leaving the source
is N, and the net flux into each of the N nodes is 1. The
direction of positive flux is defined for each edge according
to the flow in the original network. We assume (without
loss of generality, as we shall see later) that the network of
edges is a tree T [Fig. 1(b)]. This loop-free property allows
us to assign fluxes on T unambiguously [Fig. 1(c)]. It also
means there must be N edges, because into each node flows
exactly one edge.
We now consider what happens when the network is

broken and then repaired. In our model, a break consists of
disabling a single edge i (i.e., edge i becomes just a bond;
bonds have zero flux), which disconnects the tree T into two
disjoint trees [Fig. 1(d)]. We then proceed to repair the
network by adding an edge j ≠ i such that the new network
is once more a tree, with a new set of fluxes fJ0ig [Fig. 2(e)].
We define the cost (intervention required) cij from this
break-repair operation as the sum of the absolute changes in
flux, but omitting the flux in the broken edge (we do not pay
for the attack):

cij ¼ −jJij þ
X

k an edge

jJ0k − Jkj: ð1Þ

This makes sense: if we imagine a fluid to flow along small
unit flux pipes in parallel, or cars to travel along unit flux
lanes of a highway, c is the number of pipes or lanes to add
or remove (where reversing involves adding and removing).
Note in particular that we pay if capacity is reduced; this is a
valid strategy if there is an ongoing maintenance cost
attached to the capacity of each edge (e.g., metabolism in
biological tissues), so that it is rational to pay up front to
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FIG. 1. A distribution network and the process of damage and
repair. (b) Each house requires one unit of water per day from a
tower. The flux into each house is equal to the number of
houses downstream from it, plus one. Each day a random pipe
breaks, and a new pipe must be built elsewhere to reconnect the
cut off houses. Moreover, some pipes upstream and downstream
from the new pipe must be resized to accommodate the change in
demand. What network minimizes the expected total change in
flux, or pipe altered, per break? (a) The source (open circle),
nodes (closed circles), and bonds, which are possible edges
(dashed lines). (b) The tree of edges connecting the nodes to the
source. (c) The fluxes Ji at each edge. (d) An edge is broken,
splitting the tree in two. (e) A new bond is made an edge,
reconnecting the subtrees, and the updated fluxes J0i. (f) The
changes in fluxes jJ0i − Jij. They vanish everywhere except on the
loop through the broken and repairing edges. The cost of repair
is the flux through the broken edge times the remaining loop
length: c ¼ 5 × ð8 − 1Þ ¼ 35.
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eliminate this. This is the natural choice from a mathematical
perspective, but may not always be physically realistic. We
later consider the alternative model where spare capacity is
free; here we find the costs are proportional to those in our
original model.
In order to evaluate cij, suppose we have any two valid

networks T 0 and T 00 with the same source location. If we
subtract the fluxes in T 00 from those in T 0, the resultant
pattern of fluxes must have no sources or sinks. Therefore,
it must either vanish or be a sum of closed flux loops. Now
consider our original network T. If we make a new network
containing the original edges of T and the added edge k,
this network is no longer a tree, but contains exactly one
loop, of length dij. When we take the difference of the
fluxes in the original and repaired networks, this is the only
path that can have a nonzero flux [Fig. 1(f)], which must be
the original flux at i (since after repair, the flux in this edge
is zero). Consequently, the cost of repair is equal to the
length of the loop through i and j less 1 (we omit the
broken edge) times the flux at i: cij ¼ Jiðdij − 1Þ, where
Ji ¼ jJij. Now a broken network can be mended in a
number of ways, corresponding to different choices of the
bond j. We desire the cheapest repair, which is the one with
the least cost:

ci ¼ Jimin
j
ðdij − 1Þ: ð2Þ

Hereafter, we take “repair” to mean “cheapest repair" and
call the loop that arises from considering both the broken
edge and the repair a dormant loop. Because the cost of
repair ci depends on the particular edge i that is broken,
which is unknown, we want the expected cost of repair:

hci ¼ 1

N

X

ian edge

Jimin
j
ðdij − 1Þ: ð3Þ

What network minimizes hci? Figure 2 shows some
examples of networks, with associated values for hci.
Easily repairable after one break.—The expected cost of

repair hci will be a minimum if two conditions are met: the
expected absolute flux hJi≡ N−1P Ji in the original

network is a minimum, and all the individual loop lengths
dij are minimal. Without knowing to what extent the two
are independent, we first ask, What networks minimize
hJi? To answer this, we note that every node must be
connected to the source by some path, and along this path
flows a unit of flux. There may also be confluent fluxes to
other nodes flowing in the same edges, but we can
conceptually treat this flux separately, even if in practice
we do not keep track of all the individual streams.
Accordingly, the expected flux hJi is 1=N times the sum
of the lengths of all these streams. A minimum of hJi is
achieved when each path is a geodesic of L between the
node and the source. Such geodesics in general will not be
unique, but at least one network composed of them must be
a tree, because any loop can be broken by removing the
distal edge and diverting the incoming streams into one side
of this loop. If the source is at the lattice center, we find
hJimin ¼ l=2 for a square lattice (L□) and l=3 for a
triangular lattice (L▵). Since the minimum loop length
dij on L□ and L△ is 4 and 3, we find

hci□ ≥ 3l=2 and hci▵ ≥ 2l=3: ð4Þ

Because both of these criteria can be met simultaneously, as
Fig. 3 demonstrates, the above bounds can be achieved. We
call the solutions, which are not unique, easily repairable
networks.
The structure of ERNs on regular lattices is remarkable

in that they have exactly three levels of hierarchy: con-
nected to the source are primary arms (1-arms), from which
branch secondary arms (2-arms), from which branch
terminal hairs of length 1 (3-arms). This is in contrast to
robust resistor networks, which have a hierarchical branch-
ing structure over many generations [7,28]. The steps to our
proof are as follows. (i) A 1-arm must lie along a coordinate
axis, or else the path to at least one of the nodes on that axis

Pinwheel, 〈c〉 = 7.0Web, 〈c〉 = 33.2Snowflake, 〈c〉 = 6.0Snake, 〈c〉 = 129.8

Spiral, 〈c〉 = 46.2 Comb, 〈c〉 = 12.8 Antenna, 〈c〉 = 11.7 Staircase, 〈c〉 = 12.2

FIG. 2. Different strategies for building a distribution network
and their expected cost of repair hci.

(a) (b) 

FIG. 3. Networks that are easy to repair after one break. The
original networks (a) and the overlapping dormant loops (b).
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would include a bend. (ii) When a 2-arm splits, there can be
only two daughter branches (including the 2-arm); there are
only two directions that are geodesic: the two away from
the origin. (iii) In any 2-arm split, the two daughter nodes
cannot both split; if they did, a closed loop would be
formed. (iv) The node joining two consecutive edges must
have a split, or else the distal edge could not be part of a
minimal dormant loop.
Easily repairable after many breaks.—Thus far we have

considered networks subject to a single break. What
happens when there is a series of breaks? As indicated
earlier, we suppose that a break cannot be repaired
immediately but is open to intervention later on (e.g., if
there is another attack in the neighborhood). Clearly,
repairing the first break (at a cost of 3l=2 or 2l=3) leaves
the network fully functional. However, there is a more
subtle effect: the repairs themselves may not be optimally
repairable. Consequently, as the number of breaks
increases, the network degrades, and the expected cost
of repair hci goes up.
How do we fix this? The structure of an ERN is such that

(i) it is geodesic, thereby minimizing hJi, and (ii) each of its
edges is part of a minimal dormant loop, thereby minimiz-
ing d. Network degradation is due to (i’) the failure of the
repaired network to be geodesic, and (ii’) the increase in
dormant loop length. Now (i’) is because a minimal latent
loop can have 4 (L□) or 3 (L△) orientations, or spins, and
not all of these are geodesic; since repair is performed on
the only absent edge, eventually the spins will occur with
equal frequency. And (ii’) is the result of dormant loops that
share an edge: when an edge belonging to two such loops is
broken, repairing it coalesces them into one larger dormant
loop. Therefore, to optimize networks under multiple
breaks, we must ensure that the dormant loops are
independent, having no edges in common. Figure 4 shows

that for L△, this is achievable; for L□, there will always be
at least a small fraction of dormant loops sharing an edge,
and in fact, these dominate the change in hci after many
breaks. Figure 5 shows the calculation for the average
repair cost per break after many breaks. The final result in
the many-break limit is

hci□ → 7l=4þOð1Þ and hci▵ → 8l=9: ð5Þ

In both cases, the networks are able to withstand any
number of breaks in exchange for a modest increase in the
expected repair cost. We call the solutions steady-state
ERNs. Their design aims to achieve three properties (all
being simultaneously possible for the triangular lattice):
(i) the initial network is geodesic, (ii) the dormant loops are
minimal, (iii) the dormant loops do not overlap.
We briefly consider the case where we do not have to pay

to immediately reduce capacity. For an ERN on L▵, the
expected cost of repair is identical in both cases, because
none of the fluxes change direction, and we do not pay for
the break itself. For a steady-state ERN on L▵, analysis
similar to that in Fig. 5 (but now involving six states)
reveals that asymptotically hci▵ → 5l=9.
Conclusion.—Some aspects of repairability we have not

addressed here, but briefly mention: First, if the edges are
of unequal length, we can generalize our model by letting
dij be the physical length of the loop rather than the number
of edges in it. For small perturbations from the regular
lattice L there will be no new solutions (since moving away
from a solution optimal on L incurs a cost of order unity),
but the perturbations will break degeneracy of the optimal
solutions. Second, it is well known that in scale-free
networks directed attacks against high-degree nodes can
cause major damage. We have assumed attacks are undi-
rected. To inflict the most damage, an attack would target
the highest flux edges, namely, those adjacent to the source.
In a triangular ERN, the cost of repair for such a directed
attack is 3l=4 times more than the undirected case. Third,
while we only considered a single source, we expect
multiple sources to merely partition L into Voronoi regions,
without introducing added congestion [29]. Fourth, apply-
ing our model to other topologies, such as scale-free

(a) (b) (c)

FIG. 4. Networks that are easy to repair after many breaks. The
original networks (a), the networks after many break-repair cycles
(b), and the independent dormant loops (c).

FIG. 5. The three spins of a dormant loop. Only the left spin is
geodesic. Each break and repair sends the loop from one spin to
another. The total flux along the geodesic loop is aþ b. After
many break-repair cycles, the total flux, averaged over all spins, is
4
3
ðaþ bÞ. Thus, at steady state, the expected flux hJð∞Þi is 4=3

of that before any breaks hJð0Þi.
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networks [16], may be possible, but would require their
redesign to include pervasive loops.
We believe our model of distribution networks captures

essential features of their real-world analogs in a form
simple enough to be analytically tractable. The structure of
ERNs and steady-state ERNs embodies useful design
directions for engineering applications, such as resource
distribution, smart electricity grids [30], and communica-
tion networks. More generally, it helps quantify the concept
of repairability, and is a framework for understanding it as
an alternative to robustness in achieving resilience.
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